107 resultados para edge contrast
Resumo:
The effect of having an edge reinforcement around a circular elastic inclusion in a cylindrical shell is studied. The influence of various parameters of the reinforcement such as area of cross section and moment of inertia on the stress concentrations around the inclusion is investigated. It is found that for certain inclusion parameters it is possible to get an optimum reinforcement, which gives minimum stress concentration around the inclusion. The effect of moment of inertia of the reinforcement of SCF is found to be negligible. The results are plotted in a non-dimensional form and a comparison with flat plate results is made which show the curvature effect. In the limiting case of a rigid reinforcement the results tend to those of a rigid circular inclusion. Results are also presented for different values of μe the ratio of extensional rigidity of shell to that of the inclusion.
Resumo:
The use of appropriate finite elements in different regions of a stressed solid can be expected to be economical in computing its stress response. This concept is exploited here in studying stresses near free edges in laminated coupons. The well known free edge problem of [0/90], symmetric laminate is considered to illustrate the application of the concept. The laminate is modelled as a combination of three distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the two regions. Significant reduction in the problem size and hence in the computational time and cost have been achieved at almost no loss of accuracy.
Resumo:
XANES in the K-edge of copper in the systems CuO, Cu(OH)2, La2CuO4, Cu3AsO4 and CuOHF have been investigated and transitions have been assigned to the observed structures. The measurements have been used for calculating the first coordination bond distance in the above systems. It is observed that the values so determined agree fairly well with crystallographic values.
Resumo:
Using a continuum Dirac theory, we study the density and spin response of zigzag edge-terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g., width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight-binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism, etc., and also suggest possibilities for device applications of graphene nanoribbons.
Resumo:
The X-ray LIII absorption-edge structure of rhenium in Cs2[ReCl6] has been measured with a bent-crystal X-ray spectrograph. An analysis in terms of molecular-orbital (m.o.) theory has been attempted. The energies of the m.o. levels, crystal-field splitting parameter, effective magnetic moment, magnetic susceptibility, and Landég parameter have been determined from this analysis. An estimate of the Re–Cl bond length has also been made.
Resumo:
We present the x-ray absorption data at the oxygen K-edge using total yield technique for Gd1−xPrxba2Cu3O7 (x= 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0). The data clearly to oxygen that the holes doped in the GdBa2Cu3O7 due to oxygen composition are not removed by Pr doping even for the x = 1.0 sample, suggesting that Pr is predominantly in the formally trivalent state. However, the data also clearly indicate the evidence of hybridization effects between the Pr3+ and the adjacent CuO2 layers. This is suggested to be responsible for the progressive suppression of Tc and the metallicity with Pr doping in these systems.
Resumo:
Chemical shifts, ΔE, of the X-ray K-absorption edge in several compounds, complexes of copper including its superconducting oxides possessing formal oxidation states +1 and +2 have been measured. It has been shown that the chemical shift is primarily governed by the effective ionic charge on the absorbing ion and the nature of the atoms in the first coordination shell around the absorbing ion. The relation between the chemical shift, ΔE , and the effective charge q on the absorbing ion is found to be ΔE=Aq+Bq2+Cq3+Dq4 (A, B, C and D are constants). The effects of electronegativity, atomic number, oxidation state, crystal structure, the valence d-orbital electrons, etc. on the X-ray absorption chemical shift have been discussed. ©1990 The Physical Society of Japan
Resumo:
In a number of applications of computerized tomography, the ultimate goal is to detect and characterize objects within a cross section. Detection of edges of different contrast regions yields the required information. The problem of detecting edges from projection data is addressed. It is shown that the class of linear edge detection operators used on images can be used for detection of edges directly from projection data. This not only reduces the computational burden but also avoids the difficulties of postprocessing a reconstructed image. This is accomplished by a convolution backprojection operation. For example, with the Marr-Hildreth edge detection operator, the filtering function that is to be used on the projection data is the Radon transform of the Laplacian of the 2-D Gaussian function which is combined with the reconstruction filter. Simulation results showing the efficacy of the proposed method and a comparison with edges detected from the reconstructed image are presented
Resumo:
Electronic, magnetic, and structural properties of graphene flakes depend sensitively upon the type of edge atoms. We present a simple software tool for determining the type of edge atoms in a honeycomb lattice. The algorithm is based on nearest neighbor counting. Whether an edge atom is of armchair or zigzag type is decided by the unique pattern of its nearest neighbors. Particular attention is paid to the practical aspects of using the tool, as additional features such as extracting out the edges from the lattice could help in analyzing images from transmission microscopy or other experimental probes. Ultimately, the tool in combination with density-functional theory or tight-binding method can also be helpful in correlating the properties of graphene flakes with the different armchair-to-zigzag ratios. Program summary Program title: edgecount Catalogue identifier: AEIA_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66685 No. of bytes in distributed program, including test data, etc.: 485 381 Distribution format: tar.gz Programming language: FORTRAN 90/95 Computer: Most UNIX-based platforms Operating system: Linux, Mac OS Classification: 16.1, 7.8 Nature of problem: Detection and classification of edge atoms in a finite patch of honeycomb lattice. Solution method: Build nearest neighbor (NN) list; assign types to edge atoms on the basis of their NN pattern. Running time: Typically similar to second(s) for all examples. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate the comparative stability of sp(2) bonded planar hexagonal boron nitride (h-BN) nanoribbon (BNNR) edges, using first principles calculations. We find that the pristine armchair edges have the highest degree of stability. Pristine zigzag edges are metastable, favoring planar reconstructions in the form of 5-7 rings] that minimizes the energy. Our investigation further reveals that the pristine zigzag edges can be stabilized against 5-7 reconstructions by passivating the dangling bonds at the edges by other elements, such as hydrogen (H) atoms. Electronic and magnetic properties of nanoribbons depend on the edge shapes and are strongly affected by edge reconstructions.
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
Edge-sharing bioctahedral (ESBO) complexes [Ru-2(OMe)(O2CC6H4-p-X)3(1-MeIm)(4)](ClO4)2 (X = OMe (1a), Me (1b)) and [Ru-2(O2CC6H4-P-X)(4)(1-MeIm)(4)](ClO4)(2) (X = OMe (2a), Me (2b)) are prepared by reacting Ru2Cl(O(2)CR)(4) with 1-methylimidazole (1-MeIm) in methanol followed by treatment with NaClO4. Complex 2a and the PF6- salt (1a') of 1a have been structurally characterized. Crystal data for 1a.1.5MeCN. 0.5Et(2)O: triclinic, P (1) over bar, a = 13.125(2) Angstrom, b = 15.529(3) Angstrom, c 17.314(5) Angstrom, a; 67.03(2)degrees, beta 68.05(2)degrees, gamma = 81.38(1)degrees, V 3014(1) Angstrom(3), Z = 2. Crystal data for 2a: triclinic, P (1) over bar, a 8.950(1) Angstrom, b = 12.089(3) Angstrom, c = 13.735(3) Angstrom, alpha 81.09(2)degrees, beta = 72.27(1)degrees, gamma = 83.15(2)degrees, V = 1394(1) Angstrom(3), Z = 1. The complexes consist of a diruthenium(III) unit held by two monoatomic and two three-atom bridging ligands. The 1-MeIm ligands are at the terminal sites of the [Ru-2(mu-L)(eta(1):mu-O(2)CR)(eta(1):eta(1):mu-O(2)CR)(2)](2+) core having a Ru-Ru single bond (L = OMe or eta(1)-O(2)CR). The Ru-Ru distance and the Ru-O-Ru angle in the core of 1a' and 2a are 2.49 Angstrom and similar to 76 degrees. The complexes undergo one-electron oxidation and reduction processes in MeCN-0.1 M TBAP to form mixed-valence diruthenium species with Ru-Ru bonds of orders 1.5 and 0.5, respectively.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.