77 resultados para differential analysis
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
We prove that the group of continuous isometries for the Kobayashi or Caratheodory metrics of a strongly convex domain in C-n is compact unless the domain is biholomorphic to the ball. A key ingredient, proved using differential geometric ideas, is that a continuous isometry between a strongly convex domain and the ball has to be biholomorphic or anti-biholomorphic. Combining this with a metric version of Pinchuk's rescaling technique gives the main result.
Resumo:
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a theory for two-person zero sum multicriterion differential games is presented. Various solution concepts based upon the notions of Pareto optimality (efficiency), security and equilibrium are defined. These are shown to have interesting applications in the formulation and analysis of two target or combat differential games. The methods for obtaining outcome regions in the state space, feedback strategies for the players and the mode of play has been discussed in the framework of bicriterion zero sum differential games. The treatment is conceptual rather than rigorous.
Resumo:
The advent of large and fast digital computers and development of numerical techniques suited to these have made it possible to review the analysis of important fundamental and practical problems and phenomena of engineering which have remained intractable for a long time. The understanding of the load transfer between pin and plate is one such. Inspite of continuous attack on these problems for over half a century, classical solutions have remained limited in their approach and value to the understanding of the phenomena and the generation of design data. On the other hand, the finite element methods that have grown simultaneously with the recent development of computers have been helpful in analysing specific problems and answering specific questions, but are yet to be harnessed to assist in obtaining with economy a clearer understanding of the phenomena of partial separation and contact, friction and slip, and fretting and fatigue in pin joints. Against this background, it is useful to explore the application of the classical simple differential equation methods with the aid of computer power to open up this very important area. In this paper we describe some of the recent and current work at the Indian Institute of Science in this last direction.
Resumo:
We prove the spectral invariance of SG pseudo-differential operators on L-P(R-n), 1 < p < infinity, by using the equivalence of ellipticity and Fredholmness of SG pseudo-differential operators on L-p(R-n), 1 < p < infinity. A key ingredient in the proof is the spectral invariance of SC pseudo-differential operators on L-2(R-n).
Resumo:
Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.
Resumo:
The problem of pumping an aquifer in an aquifer-water table aquitard system is considered, accounting for the elastic properties of both the aquifer and the aquitard, the gravity drainage in the aquitard and treating the water table as an unknown boundary. The coupled partial differential equations are nondimensionalised, yielding three principal parameters governing the problem. The numerical solution of these equations is obtained for a wide range of parameter values. Type curves are generated and their use is illustrated through a field application.
Resumo:
A new fast and efficient marching algorithm is introduced to solve the basic quasilinear, hyperbolic partial differential equations describing unsteady, flow in conduits by the method of characteristics. The details of the marching method are presented with an illustration of the waterhammer problem in a simple piping system both for friction and frictionless cases. It is shown that for the same accuracy the new marching method requires fewer computational steps, less computer memory and time.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finite-element mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step, (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a `leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (R) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case.
Resumo:
An angle invariance property based on Hertz's principle of particle dynamics is employed to facilitate the surface-ray tracing on nondevelopable hybrid quadric surfaces of revolution (h-QUASOR's). This property, when used in conjunction with a Geodesic Constant Method, yields analytical expressions for all the ray-parameters required in the UTD formulation. Differential geometrical considerations require that some of the ray-parameters (defined heuristically in the UTD for the canonical convex surfaces) be modified before the UTD can be applied to such hybrid surfaces. Mutual coupling results for finite-dimensional slots have been presented as an example on a satellite launch vehicle modeled by general paraboloid of revolution and right circular cylinder.
Resumo:
Monoclonal antibodies (MAbs) have been used extensively for identification of sequence-specific epitopes using either the ELISA or/and IRMA methods, However, attempts to use MAbs for identification of conformation-specific epitopes have been very few as they are considered very labile. We have investigated the stability of conformation-specific epitopes of human chorionic gonadotropin (hCG) using a quantitative solid-phase radioimmnunoassay (SPRIA) technique. Several epitopes are stable to mild modification (chemical and proteolytic) conditions, and epitopes show differential stability for these modifications. Based on these observations, a monoclonal antibody (MAb 16) for an a-subunit-specific epitope of hCG has been used to monitor changes at the epitopic site (identified as epitope 16) on modification of hCG, using SPRIA with immobilized MAb 16. Modifications of amino groups, hydroxyl group of tyrosine as well as carboxyl group of Asp/Glu all bring about sufficient changes in the epitope integrity. Peptide bond hydrolysis at lysine residues damages the epitope, but not at arginine residues, Hydrolysis at tyrosine does not affect the epitope, though modification of the side-chain of tyrosine inactivates the epitope. Destruction of the epitope occurs on reduction of the disulphide bonds. Partial retention of the epitope activity is seen on modification of carboxyl or the epsilon-amino groups of lysine. Based on these results four to six amino acids have been identified to be at the epitopic site, and the data suggest that two peptide segments are brought together by the disulphide bond Cys10-Cys60 to form the epitope.
Resumo:
An exact three-dimensional elasticity solution has been obtained for an infinitely long, thick transversely isotropic circular cylindrical shell panel, simply supported along the longitudinal edges and subjected to a radial patch load. Using a set of three displacement functions, the boundary value problem is reduced to Bessel's differential equation. Numerical results are presented for different thickness to mean radius ratios and semicentral angles of the shell panel. Classical and first-order shear deformation orthotropic shell theories have been examined in comparison with the present elasticity solution.