69 resultados para diamond machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of a cast Al---Si alloy-graphite particle composite is examined using optical and analytical scanning electron microscopy. Specimens containing different percentages of graphite were machined by orthogonal planning with 25° and 45° rake angle tools at both 6.5 and 13.2 m min−1. The machining forces are reported and the chip-rake-face friction coefficients and shear flow stresses are calculated. It is shown that the reduction in machining forces with increasing graphite content is due mostly to a decrease in the shear flow stress rather than to lower chip-rake-face friction. Both the polished and the machined surfaces of the composite are rougher than those of the simple alloy, apparently owing to the greater porosity, the tearing out of graphite particles, or the opening of cracks at the graphite particles in the wake of the tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new three-dimensional zinc-triazolate-oxybis(benzoate) compounds. [{Zn-3(H2O)(2)}{C12H8O(COO)(2)}(2)-{C2H2N3}(2)]center dot 2H(2)O(I), [Zn-7{C12H8O(COO)(2)}(4){C2H2N3}(6)]center dot H2O, (II), and[{Zn-5(OH)(2)}{C12H8O(COO)(2)}(3){C2H2N3}(2)] (III), synthesized by a hydrothermal reaction of a mixture of Zn(OAc)(2)center dot 2H(2)O, 4,4'-oxybis(benzoic acid), 1,2,4-triazole, NaOH, and water. Compound I has an interpenetrated diamond structure and II and III have pillared-layer related structures. The formation of a hydrated phase (I) at low temperature and a completely dehydrated phase (III) at high temperature suggests the importance of thermodynamic factors in the formation of three compounds. Transformation studies of I in the presence of water shows the formation of a simple Zn-OBA compound, [Zn(OBA)(H2O)] (IV), at 150 and 180 degrees C and compound III at 200 degrees C. The compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction. thermogravimetric analysis, IR, and photoluminescence studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is virtually impossible to produce castings free from internal stresses using conventional methods of founding. Castings with appreciable stresses distort during storage, transportation, machining and service. Though composition and melt treatment are known to affect the magnitude of residual stress in castings, the data on the effect of carbon equivalent and inoculation on the magnitude of residual stress in castings are limited. In the present investigation, an attempt is made to study (i) the effect of carbon equivalent on residual stress in cast iron castings, and (ii) the effect of inoculants such as calcium silicide and ferrosilicon on residual stress in iron castings in the carbon equivalent range 3.0–4.0%. The results of the investigation indicate the following: (i) the residual strains decrease linearly with increase in carbon equivalent in the uninoculated and inoculated irons; (ii) the tensile residual stresses decrease linearly with increase in carbon equivalent value of the uninoculated, calcium silicide-inoculated and ferrosilicon-inoculated cast iron castings; (iii) the ratio of UTS to residual stress increased on inoculating the grid castings. This increase is higher for calcium silicide-inoculated grids than for ferrosilicon-inoculated grid castings. This implies that from the residual stress point of view, inoculation of the iron with calcium silicide is beneficial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rough hydrophobic surface when immersed in water can result in a ``Cassie'' state of wetting in which the water is in contact with both the solid surface and the entrapped air. The sustainability of the entrapped air on such surfaces is important for underwater applications such as reduction of flow resistance in microchannels and drag reduction of submerged bodies such as hydrofoils. We utilize an optical technique based oil total internal reflection of light at the water-air interface to quantify the spatial distribution of trapped air oil such a surface and its variation with immersion time. With this technique, we evaluate the sustainability of the Cassie state on hydrophobic surfaces with four different kinds of textures. The textures studied are regular arrays of pillars, ridges, and holes that were created in silicon by a wet etching technique, and also a texture of random craters that was obtained through electrodischarge machining of aluminum. These surfaces were rendered hydrophobic with a self-assembled layer Of fluorooctyl trichlorosilane. Depending on the texture, the size and shape of the trapped air pockets were found to vary. However, irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear, suggesting that the sustainability of the ``Cassie'' state is finite for all the microstructures Studied. This is possibly due to diffusion of air from the trapped air pockets into the water. The time scale for disappearance of air pockets was found to depend on the kind of microstructure and the hydrostatic pressure at the water-air interface. For the surface with a regular array of pillars, the air pockets were found to be in the form of a thin layer perched on top of the pillars with a large lateral extent compared to the spacing between pillars. For other surfaces studied, the air pockets are smaller and are of the same order as the characteristic length scale of the texture. Measurements for the surface with holes indicate that the time for air-pocket disappearance reduces as the hydrostatic pressure is increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integral diaphragm pressure transducer consists of a diaphragm machined from precipitation hardened martensitic (APX4) steel. Its performance is quite significant as it depends upon various factors such as mechanical properties including induced residual stress levels, metallurgical and physical parameters due to different stages of processing involved. Hence, the measurement and analysis of residual stress becomes very important from the point of in-service assessment of a component. In the present work, the stress measurements have been done using the X-ray diffraction (XRD) technique, which is a non-destructive test (NDT). This method is more reliable and widely used compared to the other NDT techniques. The metallurgical aspects have been studied by adopting the conventional metallographic practices including examination of microstructure using light microscope. The dimensional measurements have been carried out using dimensional gauge. The results of the present investigation reveals that the diaphragm material after undergoing series of realization processes has yielded good amount of retained austenite in it. Also, the presence of higher compressive stresses induced in the transducer results in non-linearity, zero shift and dimensional instability. The problem of higher retained austenite content and higher compressive stress have been overcome by adopting a new realization process involving machining and cold and hot stabilization soak which has brought down the retained austenite content to about 5–6% and acceptable level of compressive stress in the range −100 to −150 MPa with fine tempered martensitic phase structure and good dimensional stability. The new realization process seems to be quite effective in terms of controlling retained austenite content, residual stress, metallurgical phase as well as dimensional stability and this may result in minimum zero shift of the diaphragm system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we present a comparative study of the Raman spectra of alkali halides in relation to the lattice dynamics ofBorn andRaman. It is shown that the experimentally observed limit of the second-order spectra in almost all the cases can be explained well by the Lyddane-Sachs-Teller relation. It is also seen, while, an explanation of the second-order Raman spectrum of a crystal of diamond or zinc blende structure requires the frequencies from the critical points,W, Gamma, X andL inBorn's analysis, the frequencies fromGamma, X andL alone are sufficient and necessary for an interpretation of the same onRaman's model. Some similarities in the determination of the long wave properties of crystals like elastic constants and limiting frequencies of the lattice vibrations in the symmetry directions in both the models are pointed out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integral diaphragm pressure transducers machined out of precipitation hardened martensite stainless steel (APX4) are widely used for propellant pressure measurements in space applications. These transducers are expected to exhibit dimensional stability and linearity for their entire useful life. These vital factors are very critical for the reliable performance and dependability of the pressure transducers. However, these transducers invariably develop internal stresses during various stages of machining. These stresses have an adverse effect on the performance of the transducers causing deviation from linearity. In order to eliminate these possibilities, it was planned to cryotreat the machined transducers to improve both the long-term linearity and dimensional stability. To study these effects, an experimental cryotreatment unit was designed and developed based on the concept of indirect cooling using the concept of cold nitrogen gas forced closed loop convection currents. The system has the capability of cryotreating large number of samples for varied rates of cooling, soaking and warm-up. After obtaining the initial levels of residual stress and retained austenite using X-ray diffraction techniques, the pressure transducers were cryotreated at 98 K for 36 h. Immediately after cryotreatment, the transducers were tempered at 510 degrees C for 3 h in vacuum furnace. Results after cryo treatment clearly indicated significant reduction in residual stress levels and conversion of retained austenite to martensite. These changes have brought in improvements in long term zero drift and dimensional stability. The cryotreated pressure transducers have been incorporated for actual space applications. (c) 2010 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The random direction short Glass Fiber Reinforced Plastics (GFRP) have been prepared by two compression moulding processes, namely the Preform and Sheet Moulding Compound (SMC) processes. Cutting force analysis and surface characterization are conducted on the random direction short GFRPs with varying fiber contents (25 similar to 40%). Edge trimming experiments are preformed using carbide inserts with varing the depth of cut and cutting speed. Machining characteristics of the Preform and SMC processed random direction short GFRPs are evaluated in terms of cutting forces, surface quality, and tool wear. It is found that composite primary processing and fiber contents are major contributing factors influencing the cutting force magnitudes and surface textures. The SMC composites show better surface finish over the Preform composites due to less delamination and fiber pullouts. Moreover, matrix damage and fiber protrusions at the machined edge are reduced by increasing fiber content in the random direction short GFRP composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A block of high-purity copper was indented by a 120-degrees diamond-tipped cone. Strain gauges were placed on the surface to measure the radial strains at different surface locations, during loading as well as unloading. The competence of three stress fields proposed for elastic-plastic indentation is assessed by comparing the predicted surface radial strains with those experimentally observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cutting of Y2O3-doped TZP rods by a low-speed diamond saw introduces an unidentified, metastable phase X (x-ZrO2) coexisting with the tetragonal (t-ZrO2) and the monoclinic (m-ZrO2) phases initially present in the sample. Further mechanical deformation of the cut surface by indentation or polishing sustains the x-ZrO2. Chemical etching removes the x-ZrO2 and increases the m-ZrO2content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of nanoscale liquid droplets by friction of a solid is observed in real-time. This is achieved using a newly developed in situ transmission electron microscope (TEM) triboprobe capable of applying multiple reciprocating wear cycles to a nanoscale surface. Dynamical imaging of the nanoscale cyclic rubbing of a focused-ion-beam (FIB) processed Al alloy by diamond shows that the generation of nanoscale wear particles is followed by a phase separation to form liquid Ga nanodroplets and liquid bridges. The transformation of a two-body system to a four-body solid-liquid system within the reciprocating wear track significantly alters the local dynamical friction and wear processes. Moving liquid bridges are observed in situ to play a key role at the sliding nanocontact, interacting strongly with the highly mobile nanoparticle debris. In situ imaging demonstrates that both static and moving liquid droplets exhibit asymmetric menisci due to nanoscale surface roughness. Nanodroplet kinetics are furthermore dependent on local frictional temperature, with solid-like surface nanofilaments forming on cooling. TEM nanotribology opens up new avenues for the real-time quantification of cyclic friction, wear and dynamic solid-liquid nanomechanics, which will have widespread applications in many areas of nanoscience and nanotechnology.