139 resultados para cyclic higher-order statistics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KIRCHHOFF’S theory [1] and the first-order shear deformation theory (FSDT) [2] of plates in bending are simple theories and continuously used to obtain design information. Within the classical small deformation theory of elasticity, the problem consists of determining three displacements, u, v, and w, that satisfy three equilibrium equations in the interior of the plate and three specified surface conditions. FSDT is a sixth-order theory with a provision to satisfy three edge conditions and maintains, unlike in Kirchhoff’s theory, independent linear thicknesswise distribution of tangential displacement even if the lateral deflection, w, is zero along a supported edge. However, each of the in-plane distributions of the transverse shear stresses that are of a lower order is expressed as a sum of higher-order displacement terms. Kirchhoff’s assumption of zero transverse shear strains is, however, not a limitation of the theory as a first approximation to the exact 3-D solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast iterative scheme based on the Newton method is described for finding the reciprocal of a finite segment p-adic numbers (Hensel code). The rate of generation of the reciprocal digits per step can be made quadratic or higher order by a proper choice of the starting value and the iterating function. The extension of this method to find the inverse transform of the Hensel code of a rational polynomial over a finite field is also indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new higher order shear deformation theory of laminated composite plates is developed. The basic displacement variables in this theory are two partial normal displacements and two in-plane displacement parameters. The governing equations are presented in the form of four simultaneous partial differential equations. The shear deformation theories of Bhimareddy and Stevens, and of Reddy are special cases of this formulation. In their models, transverse shear strains will become zero at points in the plate where displacements are constrained to be zero such as those on fixed edges. This limitation has been overcome in the present formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved higher order transverse shear deformation theory is employed to arrive at modified constitutive relations which can be used in the flexural, buckling and vibration analysis of laminated plates and shells. The strain energy for such systems is then expressed in terms of the displacements and the rotations for ready reference and use. Numerical values of vibration frequencies are obtained using this formulation employing Ritz's method of analysis. The results are compared with those available in the literature to validate the analysis presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dispersion characteristics of the dominant and higher order modes in unilateral firdines on uniaxially anisotropic substrates have been obtained. The solution has been obtained by applying the equivalent transmission-line concept in the spectral domain and by using Galerkhr’s method. Numericaf results for the propagation constant as a function of the slot-width ratio and freqnency are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of initial functions has been applied for deriving higher order theories for cross-ply laminated composite thick rectangular plates. The equations of three-dimensional elasticity have been used. No a priori assumptions regarding the distribution of stresses or displacements are needed. Numerical solutions of the governing equations have been presented for simply supported edges and the results are compared with available ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new procedures for the extrapolation of series coefficients from a given power series expansion are proposed. They are based on (i) a novel resummation identity, (ii) parametrised Euler transformation (pet) and (iii) a modifiedpet. Several examples taken from the Ising model series expansions, ferrimagnetic systems, etc., are illustrated. Apart from these applications, the higher order virial coefficients for hard spheres and hard discs have also been evaluated using the new techniques and these are compared with the estimates obtained by other methods. A satisfactory agreement is revealed between the two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-linear model, construed as a generalized version of the models put forth earlier for the study of bi-state social interaction processes, is proposed in this study. The feasibility of deriving the dynamics of such processes is demonstrated by establishing equivalence between the non-linear model and a higher order linear model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Monte Carlo simulation of Ising chains with competing short-range and infiniterange interactions has been carried out. Results show that whenever the system does not enter a metastable state, variation of temperature brings about phase transitions in the Ising chain. These phase transitions, except for two sets of interaction strengths, are generally of higher order and involve changes in the long-range order while the short-range order remains unaffected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.