62 resultados para constraint solving
Resumo:
The objectives of this paper are to examine the loss of crack tip constraint in dynamically loaded fracture specimens and to assess whether it can lead to enhancement in the fracture toughness at high loading rates which has been observed in several experimental studies. To this end, 2-D plane strain finite element analyses of single edge notched (tension) specimen and three point bend specimen subjected to time varying loads are performed. The material is assumed to obey the small strain J(2) flow theory of plasticity with rate independent behaviour. The results demonstrate that a valid J-Q field exists under dynamic loading irrespective of the crack length and specimen geometry. Further, the constraint parameter Q becomes strongly negative at high loading rates, particularly in deeply cracked specimens. The variation of dynamic fracture toughness K-dc with stress intensity rate K for cleavage cracking is predicted using a simple critical stress criterion. It is found that inertia-driven constraint loss can substantially enhance K-dc for (K) over dot > 10(5) MPa rootm/s.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.
Resumo:
Part classification and coding is still considered as laborious and time-consuming exercise. Keeping in view, the crucial role, which it plays, in developing automated CAPP systems, the attempts have been made in this article to automate a few elements of this exercise using a shape analysis model. In this study, a 24-vector directional template is contemplated to represent the feature elements of the parts (candidate and prototype). Various transformation processes such as deformation, straightening, bypassing, insertion and deletion are embedded in the proposed simulated annealing (SA)-like hybrid algorithm to match the candidate part with their prototype. For a candidate part, searching its matching prototype from the information data is computationally expensive and requires large search space. However, the proposed SA-like hybrid algorithm for solving the part classification problem considerably minimizes the search space and ensures early convergence of the solution. The application of the proposed approach is illustrated by an example part. The proposed approach is applied for the classification of 100 candidate parts and their prototypes to demonstrate the effectiveness of the algorithm. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Building flexible constraint length Viterbi decoders requires us to be able to realize de Bruijn networks of various sizes on the physically provided interconnection network. This paper considers the case when the physical network is itself a de Bruijn network and presents a scalable technique for realizing any n-node de Bruijn network on an N-node de Bruijn network, where n < N. The technique ensures that the length of the longest path realized on the network is minimized and that each physical connection is utilized to send only one data item, both of which are desirable in order to reduce the hardware complexity of the network and to obtain the best possible performance.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Nonlinear Suboptimal Guidance with Impact Angle Constraint for Slow Moving Targets in 1-D Using MPSP
Resumo:
Using a recently developed method named as model predictive static programming (MPSP), a nonlinear suboptimal guidance law for a constant speed missile against a slow moving target with impact angle constraint is proposed. In this paper MPSP technique leads to a closed form solution of the latax history update for the given problem. Guidance command is the latax,which is normal to the missile velocity and the terminal constraints are miss distance and impact angle. The new guidance law is validated by considering the nonlinear kinematics with both lag-free and first order autopilot delay.
Resumo:
Fuzzy multiobjective programming for a deterministic case involves maximizing the minimum goal satisfaction level among conflicting goals of different stakeholders using Max-min approach. Uncertainty due to randomness in a fuzzy multiobjective programming may be addressed by modifying the constraints using probabilistic inequality (e.g., Chebyshev’s inequality) or by addition of new constraints using statistical moments (e.g., skewness). Such modifications may result in the reduction of the optimal value of the system performance. In the present study, a methodology is developed to allow some violation in the newly added and modified constraints, and then minimizing the violation of those constraints with the objective of maximizing the minimum goal satisfaction level. Fuzzy goal programming is used to solve the multiobjective model. The proposed methodology is demonstrated with an application in the field of Waste Load Allocation (WLA) in a river system.
Resumo:
The DMS-FEM, which enables functional approximations with C(1) or still higher inter-element continuity within an FEM-based meshing of the domain, has recently been proposed by Sunilkumar and Roy [39,40]. Through numerical explorations on linear elasto-static problems, the method was found to have conspicuously superior convergence characteristics as well as higher numerical stability against locking. These observations motivate the present study, which aims at extending and exploring the DMS-FEM to (geometrically) nonlinear elasto-static problems of interest in solid mechanics and assessing its numerical performance vis-a-vis the FEM. In particular, the DMS-FEM is shown to vastly outperform the FEM (presently implemented through the commercial software ANSYS (R)) as the former requires fewer linearization and load steps to achieve convergence. In addition, in the context of nearly incompressible nonlinear systems prone to volumetric locking and with no special numerical artefacts (e.g. stabilized or mixed weak forms) employed to arrest locking, the DMS-FEM is shown to approach the incompressibility limit much more closely and with significantly fewer iterations than the FEM. The numerical findings are suggestive of the important role that higher order (uniform) continuity of the approximated field variables play in overcoming volumetric locking and the great promise that the method holds for a range of other numerically ill-conditioned problems of interest in computational structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For a contraction P and a bounded commutant S of P. we seek a solution X of the operator equation S - S*P = (1 - P* P)(1/2) X (1 - P* P)(1/2) where X is a bounded operator on (Ran) over bar (1 - P* P)(1/2) with numerical radius of X being not greater than 1. A pair of bounded operators (S, P) which has the domain Gamma = {(z(1) + z(2), z(2)): vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar <= 1} subset of C-2 as a spectral set, is called a P-contraction in the literature. We show the existence and uniqueness of solution to the operator equation above for a Gamma-contraction (S, P). This allows us to construct an explicit Gamma-isometric dilation of a Gamma-contraction (S, P). We prove the other way too, i.e., for a commuting pair (S, P) with parallel to P parallel to <= 1 and the spectral radius of S being not greater than 2, the existence of a solution to the above equation implies that (S, P) is a Gamma-contraction. We show that for a pure F-contraction (S, P), there is a bounded operator C with numerical radius not greater than 1, such that S = C + C* P. Any Gamma-isometry can be written in this form where P now is an isometry commuting with C and C. Any Gamma-unitary is of this form as well with P and C being commuting unitaries. Examples of Gamma-contractions on reproducing kernel Hilbert spaces and their Gamma-isometric dilations are discussed. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
As an example of a front propagation, we study the propagation of a three-dimensional nonlinear wavefront into a polytropic gas in a uniform state and at rest. The successive positions and geometry of the wavefront are obtained by solving the conservation form of equations of a weakly nonlinear ray theory. The proposed set of equations forms a weakly hyperbolic system of seven conservation laws with an additional vector constraint, each of whose components is a divergence-free condition. This constraint is an involution for the system of conservation laws, and it is termed a geometric solenoidal constraint. The analysis of a Cauchy problem for the linearized system shows that when this constraint is satisfied initially, the solution does not exhibit any Jordan mode. For the numerical simulation of the conservation laws we employ a high resolution central scheme. The second order accuracy of the scheme is achieved by using MUSCL-type reconstructions and Runge-Kutta time discretizations. A constrained transport-type technique is used to enforce the geometric solenoidal constraint. The results of several numerical experiments are presented, which confirm the efficiency and robustness of the proposed numerical method and the control of the Jordan mode.
Resumo:
This article compares the land use in solar energy technologies with conventional energy sources. This has been done by introducing two parameters called land transformation and land occupation. It has been shown that the land area transformed by solar energy power generation is small compared to hydroelectric power generation, and is comparable with coal and nuclear energy power generation when life-cycle transformations are considered. We estimate that 0.97% of total land area or 3.1% of the total uncultivable land area of India would be required to generate 3400 TWh/yr from solar energy power systems in conjunction with other renewable energy sources.
Resumo:
In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.