260 resultados para conformation change
Resumo:
For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.
Resumo:
Plasmodium falciparum TIM (PfTIM) is unique in possessing a Phe residue at position 96 in place of the conserved Ser that is found in TIMs from the majority of other organisms. In order to probe the role of residue 96, three PfTIM mutants, F96S, F96H and F96W, have been biochemically and structurally characterized. The three mutants exhibited reduced catalytic efficiency and a decrease in substrate-binding affinity, with the most pronounced effects being observed for F96S and F96H. The k(cat) values and K-m values are (2.54 +/- 0.19) x 10(5) min(-1) and 0.39 +/- 0.049 mM, respectively, for the wild type; (3.72 +/- 0.28) x 10(3) min(-1) and 2.18 +/- 0.028 mM, respectively, for the F96S mutant;(1.11 +/- 0.03) x 10(4) min(-1) and 2.62 +/- 0.042 mM, respectively, for the F96H mutant; and (1.48 +/- 0.05) x 10(5) min(-1) and 1.20 +/- 0.056 mM, respectively, for the F96W mutant. Unliganded and 3-phosphoglycerate (3PG) complexed structures are reported for the wild-type enzyme and the mutants. The ligand binds to the active sites of the wild-type enzyme (wtPfTIM) and the F96W mutant, with a loop-open state in the former and both open and closed states in the latter. In contrast, no density for the ligand could be detected at the active sites of the F96S and F96H mutants under identical conditions. The decrease in ligand affinity could be a consequence of differences in the water network connecting residue 96 to Ser73 in the vicinity of the active site. Soaking of crystals of wtPfTIM and the F96S and F96H mutants resulted in the binding of 3PG at a dimer-interface site. In addition, loop closure at the liganded active site was observed for wtPfTIM. The dimer-interface site in PfTIM shows strong electrostatic anchoring of the phosphate group involving the Arg98 and Lys112 residues of PfTIM.
Resumo:
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.
Resumo:
The infrared spectra of diprotonated species of thiocarbohydrazide and its perdeuterated derivative have been examined in the crystalline state. A complete vibrational assignment with a full normal coordinate treatment based on a Urey—Bradley type intramolecular potential Function supplemented with a valence force function for the out of plane and torsional modes is proposed and the origin of the amide II band splittings is explained. A CNDO/2 study of diprotonated thiocarbohydrazide and its neutral molecule is undertaken and the changes in the molecular electronic structures and conformations consequent to protonation are determined and briefly discussed. The magnitude of the N—N+H3 torsional barrier is estimated to be 21 kJ mol− (5.0 kcal mol−1) whereas the barrier for the C—N group is found to be 92 kJ mol−1 (22.0 kcal mol−1).
Resumo:
Alamethicin, its derivatives and some synthetic fragments have been shown to be uncouplers of oxidative phosphorylation in rat liver mitochondria. A minimum peptide chain length of 13 residues is necessary for this activity. Peptide esters are more efficient uncouplers than the corresponding peptide acids. Esterification of the Glu(18) γ-COOH group in alamethicin does not diminish uncoupling activity. The structural requirements for uncoupling activity parallel those determined for ionophoretic action in small, unilamellar liposomes. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; Ac, acetyl; CTC, chlortetracycline.
Resumo:
Analytical solutions are presented for the effectiveness factor of a zeroth-order reaction with volume change and nonuniform catalyst activity profile in slab, cylinder and spherical pellets. The possibility of shape normalization is considered for a variety of activity profiles and pellet shapes. When the catalyst activity at the external surface of the pellet is non-zero, shape normalization is obtained, which makes the asymptotic behavior of the effectiveness factor identical for small and large values of Thiele modulus, however, the normalization can lead to significant errors, particularly for the case of activity profiles decreasing towards the outer surface of the catalyst.
Resumo:
The crystal structure of the cyclic peptide disulfide Boc-Cys-Pro-Aib-Cys-NHMe has been determined by X-ray diffraction. The peptide crystallizes in the space group P212121, with A = 8.646(1), B = 18.462(2), C = 19.678(3)Å and Z = 4. The molecules adopt a highly folded compact conformation, stabilized by two intramolecular 4→ 1 hydrogen bonds between the Cys (1) and Pro (2) CO groups and the Cys (4) and methylamide NH groups, respectively. The backbone conformational angles for the peptide lie very close to those expected for a 310 helix. The S-S bridge adopts a right handed twist with a dihedral angle of 82°. The structure illustrates the role of stereochemically constrained residues, in generating novel peptide conformations. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; Boc, t-butyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; NHMe, N-methylamide; Tosyl, p-toluenesulfonyl.
Resumo:
CIsH20N3Oa+.C1-.H2 O, M r = 395, orthorhombic, Pn21a, a = 7.710 (4), b = 11.455 (3), c -- 21.199 (3)/k, Z = 4, V = 1872.4/k 3, D m = 1.38, D C = 1.403 g cm -3, F(000) = 832, g(Cu Kct) = 20.94 cm -l. Intensities for 1641 reflections were measured on a Nonius CAD-4 diffractometer; of these, 1470 were significant. The structure was solved by direct methods and refined to an R index of 0.045 using a blockdiagonal least-squares procedure. The angle between the least-squares planes through the benzene rings is 125.0 (5) ° and the side chain is folded similarly to one of the independent molecules of imipramine hydrochloride.
Resumo:
The isolation and characterization of the initial intermediates formed during the irreversible acid denaturation of enzyme Ribonuclease A are described. The products obtained when RNase A is maintained in 0.5 M HCl at 30° for periods up to 20 h have been analyzed by ion-exchange chromatography on Amberlite XE-64. Four distinct components were found to elute earlier to RNase A; these have been designated RNase Aa2, Aa1c, Aa1b, and Aa1a in order of their elution. With the exception of RNase Aa2, the other components are nearly as active as RNase A. Polyacrylamide gel electrophoresis at near-neutral pH indicated that RNase Aa1a, Aa1b, and Aa1c are monodeamidated derivatives of RNase A; RNase Aa2 contains, in addition, a small amount of a dideamidated component. RNase Aa2, which has 75% enzymic activity as compared to RNase A, consists of dideamidated and higher deamidated derivatives of RNase A. Except for differences in the proteolytic susceptibilities at an elevated temperature or acidic pH, the monodeamidated derivatives were found to have very nearly the same enzymic activity and the compact folded structure as the native enzyme. Fingerprint analyses of the tryptic peptides of monodeamidated derivatives have shown that the deamidations are restricted to an amide cluster in the region 67–74 of the polypeptide chain. The initial acid-catalyzed deamidation occurs in and around the 65–72 disulfide loop giving rise to at least three distinct monodeamidated derivatives of RNase A without an appreciable change in the catalytic activity and conformation of the ribonuclease molecule. Significance of this specific deamidation occurring in highly acidic conditions, and the biological implications of the physiological deamidation reactions of proteins are discussed.
Resumo:
ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.
Resumo:
The variable temperature proton and ambient temperature carbon-13 NMR spectra of S-methyl dithiocarbamate esters have been recorded. The results of the theoretical energy calculations (CNDO/2 and EHT types) together with the experimental data have been interpreted in terms of the molecular conformations. The barrier heights for the rotation about the thioamide C—N bond are calculated using the CNDO/2 method and the results are discussed in terms of the computed charge densities and bond orders.
Resumo:
The conformation of three linked peptide units having an internal 4 → 1 type of hydrogen bond has been studied in detail, and the low energy conformations are listed. These conformations all lead to the reversal of the chain direction, and may therefore be called as “hairpin bends” or “U-bends”. Since this bend can occur at the end of two chains hydrogen-bonded in the antiparallel β-conformation, it is also known as the “β-bend”. Two types of conformation are possible when the residues at the second and third Cα atoms are both of type L (the LL bend), while only one type is possible for the LD and the DL bend. The LL bend can also accommodate the sequences LG, GL, GG (G = glycine), while the LD bend can accommodate the sequences LG, GD and GG. The conformations for the sequences DD and DL are exact inverses (or mirror images) of those for the sequences LL and LD, respectively, and have dihedral angles (phi2, ψ2), (phi3, ψ3) of the same magnitudes, but of opposite signs as those for the former types, which are listed, along with the characteristics (length, angle and energy) of the hydrogen bonds. A comparison of the theoretical predictions with experimental data (from X-ray diffraction and NMR studies) on proteins and peptides, show reasonably good agreement. However, a systematic trend is observable in the experimental data, slightly deviating from theory, which indicates that some deformations occur in the shapes of the peptide units forming the bend, differing from that of the standard planar peptide unit.
Resumo:
The amino terminal suzukacillin decapeptide fragment, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aitbh-eO Me, two pentapeptides Boc-AibPrc-Val-AibVal-OMe and Boc-Ala-AibAla-AibAibOMe, and the tripeptide Boc-Ala-AibAibOMe have been studied by 270-MHz 'H NMR spectroscopy. By use of solvent dependence of chemical shifts in a CDC13-(CD3),S0 system and temperature dependence of amide NH chemical shifts in (CD3),S0, the intramolecularly hydrogen bonded NH groups in these peptides have been identified. The tripeptide possesses one hydrogen bond, both pentapeptides show evidence for three intramolecular hydrogen bonds, and the decapeptide has eight NH groups participating in hydrogen bonding. An Ala( 1)-Aib(2) @ turn is proposed for the tripeptide. Both pentapeptides favor 310 helical conformations composed of three consecutive B turns. The decapeptide adopts a 310 helical conformation with some flexibility at the Va1(5)-Ala(6) segment. The proposed conformations are consistent with the known stereochemical preferences of Aib residues.