53 resultados para computer aided process planning (CAPP)
Resumo:
We consider systems composed of a base system with multiple “features” or “controllers”, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a way that guarantees the “maximal” use of each feature. The methodology is based on the notion of “conflict-tolerant” features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority-based composition scheme for such features, which ensures that each feature is maximally utilized. We also provide a formal framework for specifying, verifying, and synthesizing such features. In particular we obtain a compositional technique for verifying systems developed in this framework.
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
This paper presents an algorithm for generating the Interior Medial Axis Transform (iMAT) of 3D objects with free-form boundaries. The algorithm proposed uses the exact representation of the part and generates an approximate rational spline description of the iMAT. The algorithm generates the iMAT by a tracing technique that marches along the object's boundary. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteria based on distance and local curvature of boundary entities are used to identify the junction points and the search for these junction points is done in an efficient way. The algorithm works for multiply-connected objects as well. Results of the implementation are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Standard-cell design methodology is an important technique in semicustom-VLSI design. It lends itself to the easy automation of the crucial layout part, and many algorithms have been proposed in recent literature for the efficient placement of standard cells. While many studies have identified the Kerninghan-Lin bipartitioning method as being superior to most others, it must be admitted that the behaviour of the method is erratic, and that it is strongly dependent on the initial partition. This paper proposes a novel algorithm for overcoming some of the deficiencies of the Kernighan-Lin method. The approach is based on an analogy of the placement problem with neural networks, and, by the use of some of the organizing principles of these nets, an attempt is made to improve the behavior of the bipartitioning scheme. The results have been encouraging, and the approach seems to be promising for other NP-complete problems in circuit layout.
Resumo:
Digital human modeling (DHM) involves modeling of structure, form and functional capabilities of human users for ergonomics simulation. This paper presents application of geometric procedures for investigating the characteristics of human visual capabilities which are particularly important in the context mentioned above. Using the cone of unrestricted directions through the pupil on a tessellated head model as the geometric interpretation of the clinical field-of-view (FoV), the results obtained are experimentally validated. Estimating the pupil movement for a given gaze direction using Listing's Law, FoVs are re-computed. Significant variation of the FoV is observed with the variation in gaze direction. A novel cube-grid representation, which integrated the unit-cube representation of directions and the enhanced slice representation has been introduced for fast and exact point classification for point visibility analysis for a given FoV. Computation of containment frequency of every grid-cell for a given set of FoVs enabled determination of percentile-based FoV contours for estimating the visual performance of a given population. This is a new concept which makes visibility analysis more meaningful from ergonomics point-of-view. The algorithms are fast enough to support interactive analysis of reasonably complex scenes on a typical desktop computer. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new algorithm for extracting Free-Form Surface Features (FFSFs) from a surface model. The extraction algorithm is based on a modified taxonomy of FFSFs from that proposed in the literature. A new classification scheme has been proposed for FFSFs to enable their representation and extraction. The paper proposes a separating curve as a signature of FFSFs in a surface model. FFSFs are classified based on the characteristics of the separating curve (number and type) and the influence region (the region enclosed by the separating curve). A method to extract these entities is presented. The algorithm has been implemented and tested for various free-form surface features on different types of free-form surfaces (base surfaces) and is found to correctly identify and represent the features irrespective of the type of underlying surface. The representation and extraction algorithm are both based on topology and geometry. The algorithm is data-driven and does not use any pre-defined templates. The definition presented for a feature is unambiguous and application independent. The proposed classification of FFSFs can be used to develop an ontology to determine semantic equivalences for the feature to be exchanged, mapped and used across PLM applications. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Approximate closed-form expressions for the propagation characteristics of a microstrip line with a symmetrical aperture in its ground plane are reported in this article. Well-known expressions for the characteristic impedance of a regular microstrip line have been modified to incorporate the effect of this aperture. The accuracy of these expressions for various values of substrate thickness, permittivity and line width has been studied in detail by fullwave simulations. This has been further verified by measurements. These expressions are easier to compute and find immense use in the design of broadband filters, tight couplers, power dividers, transformers, delay lines, and matching circuits. A broadband filter with aperture in ground plane is demonstrated in this article. (c) 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.
Resumo:
A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.
Resumo:
Ergonomic design of products demands accurate human dimensions-anthropometric data. Manual measurement over live subjects, has several limitations like long time, required presence of subjects for every new measurement, physical contact etc. Hence the data currently available is limited and anthropometric data related to facial features is difficult to obtain. In this paper, we discuss a methodology to automatically detect facial features and landmarks from scanned human head models. Segmentation of face into meaningful patches corresponding to facial features is achieved by Watershed algorithms and Mathematical Morphology tools. Many Important physiognomical landmarks are identified heuristically.
Resumo:
In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.
Resumo:
The last few decades have witnessed application of graph theory and topological indices derived from molecular graph in structure-activity analysis. Such applications are based on regression and various multivariate analyses. Most of the topological indices are computed for the whole molecule and used as descriptors for explaining properties/activities of chemical compounds. However, some substructural descriptors in the form of topological distance based vertex indices have been found to be useful in identifying activity related substructures and in predicting pharmacological and toxicological activities of bioactive compounds. Another important aspect of drug discovery e. g. designing novel pharmaceutical candidates could also be done from the distance distribution associated with such vertex indices. In this article, we will review the development and applications of this approach both in activity prediction as well as in designing novel compounds.
Resumo:
Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.
Resumo:
Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.