59 resultados para cold rolling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing maps are being developed for use in optimising hot workability and controlling the microstructure of the product. The present investigation deals with the examination to assess the prediction of the processing maps for a 15Cr-15Ni-2.2Mo-0.3Ti austenitic stainless steel using forging and rolling tests at different temperatures in the range of 600-1200 degreesC. The tensile properties of these deformed products were evaluated at room temperature. The influence of the processing conditions, i.e. strain rate and temperature on the tensile properties of the deformed product were analysed to identify the optimum processing parameters. The results have shown good agreement between the regimes exhibited by the map and the properties of the rolled or forged product. The optimum parameters for processing of this steel were identified as rolling or press forging at temperatures above 1050 degreesC to obtain optimum product properties. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of strain path change during rolling has been investigated for copper and nickel using X-ray diffraction and electron back scatter diffraction as well as crystal plasticity simulations. Four different strain paths namely: (i) unidirectional rolling; (ii) reverse rolling; (iii) two-step cross rolling and (iv) multi-step cross rolling were employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross rolled samples showed weaker texture with a prominent Bs {1 1 0}< 1 1 2 > and P(B(ND)) {1 1 0}< 1 1 1 > component in contrast to the unidirectional and reverse rolled samples where strong S {1 2 3}< 6 3 4 > and Cu {1 1 2}< 1 1 1 > components were formed. This was more pronounced for copper samples compared to nickel. The cross rolled samples were characterized by lower anisotropy and Taylor factor as well as less variation in Lankford parameter. Viscoplastic self-consistent simulations indicated that slip activity on higher number of octahedral slip systems can explain the weaker texture as well as reduced anisotropy in the cross rolled samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to know and to quantify the liquid holdups both dynamic and static at local levels as it will lead to understand various blast furnace phenomena properly such as slag/metal.gas.solid reactions, gas flow behaviour and interfacial area between the gas/solid/liquid. In the present study, considering the importance of local liquid holdup and non-availability of holdup data in these systems, an attempt has been made to quantify the local holdups in the dropping and around raceway zones in a cold model study using a non-wetting packing for liquid. In order to quantify the liquid holdups at microscopic level, a previously developed technique, X-ray radiography, has been used. It is observed that the liquid flows in preferred paths or channels which carry droplets/rivulets. It has been found that local holdup in some regions of the packed bed is much higher than average at a particular flow rate and this can have important consequences for the correct modelling of such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal control laws are obtained for the elevator and the ailerons for a modern fighter aircraft in a rolling pullout maneuver. The problem is solved for three flight conditions using the conjugate gradient method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, asymmetric rolling was carried out for incorporating a shear component during the rolling at different temperatures, and was compared with conventional (symmetric) rolling. The microstructures were investigated using electron back-scatter diffraction (EBSD). The strain incorporated was compared with the help of grain orientation spread (GOS). GOS was eventually used as a criterion to partition the microstructure for separating the deformed and the dynamically recrystallized (DRX) grains. The texture of the partitioned DRX grains was shifted by similar to 30 degrees along the c-axis from the deformed grains. The mechanism of dynamic recrystallization (DRX) has been identified as continuous dynamic recovery and recrystallization (CDRR). The partitioned deformed grains for the higher temperature rolled specimens exhibited a texture similar to the room temperature rolled specimen. The asymmetric rolling introduces a shear component which shifts the texture fibre by similar to 5-10 degrees from the conventional rolling texture. This led to an increase in ductility with little compromise on strength. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of microstructure and texture in commercially pure titanium has been studied as a function of strain path during rolling using experimental techniques and viscoplastic self-consistent simulations. Four different strain paths, namely unidirectional rolling, two-step cross rolling, multistep cross rolling, and reverse rolling, have been employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross-rolled samples show higher hardness with lower microstrain and intragranular misorientation compared to the unidirectional rolled sample as determined from X-ray diffraction and electron backscatter diffraction, respectively. The higher hardness of the cross-rolled samples is attributed to orientation hardening due to the near basal texture. Viscoplastic self-consistent simulations are able to successfully predict the texture evolution of the differently rolled samples. Simulation results indicate the higher contribution of basal slip in the formation of near basal texture and as well as lower intragranular misorientation in the cross-rolled samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (A (IP)) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The A (IP) and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low A (IP). The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill's anisotropic equation are compared with that obtained experimentally.