81 resultados para cognitive mapping
Resumo:
We have investigated the local electronic properties and the spatially resolved magnetoresistance of a nanostructured film of a colossal magnetoresistive (CMR) material by local conductance mapping (LCMAP) using a variable temperature Scanning Tunneling Microscope (STM) operating in a magnetic field. The nanostructured thin films (thickness ≈500nm) of the CMR material La0.67Sr0.33MnO3 (LSMO) on quartz substrates were prepared using chemical solution deposition (CSD) process. The CSD grown films were imaged by both STM and atomic force microscopy (AFM). Due to the presence of a large number of grain boundaries (GB's), these films show low field magnetoresistance (LFMR) which increases at lower temperatures. The measurement of spatially resolved electronic properties reveal the extent of variation of the density of states (DOS) at and close to the Fermi level (EF) across the grain boundaries and its role in the electrical resistance of the GB. Measurement of the local conductance maps (LCMAP) as a function of magnetic field as well as temperature reveals that the LFMR occurs at the GB. While it was known that LFMR in CMR films originates from the GB, this is the first investigation that maps the local electronic properties at a GB in a magnetic field and traces the origin of LFMR at the GB.
Resumo:
We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([ CII] 157 : 7409 mum) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100 cm balloon- borne far- infrared telescope. This new combination of instruments has a velocity resolution of similar to 200 km s(-1) and an angular resolution of 1.'5. During the first flight, an area of 30' x 15' in Orion A was mapped. These observations extend over a larger area than previous observations, the map is fully sampled and the spectral scanning method used enables reliable estimation of the continuum emission at frequencies adjacent to the [ CII] line. The total [ CII] line luminosity, calculated by considering up to 20% of the maximum line intensity is 0.04% of the luminosity of the far- infrared continuum. We have compared the [ CII] intensity distribution with the velocity- integrated intensity distributions of (CO)-C-13(1- 0), CI(1- 0) and CO( 3- 2) from the literature. Comparison of the [ CII], [ CI] and the radio continuum intensity distributions indicates that the largescale [ CII] emission originates mainly from the neutral gas, except at the position of M 43, where no [ CI] emission corresponding to the [ CII] emission is seen. Substantial part of the [ CII] emission from here originates from the ionized gas. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. ( 1999) to derive the incident UV flux and volume density at a few selected positions. The models reproduce the observations reasonably well at most positions excepting the [ CII] peak ( which coincides with the position of theta(1) Ori C). Possible reason for the failure could be the simplifying assumption of a homogeneous plane parallel slab in place of a more complicated geometry.
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up- to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat- TM/ETM+, IRS-1C/D LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (~ 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 m), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end- members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications.
Resumo:
Landslides are hazards encountered during monsoon in undulating terrains of Western Ghats causing geomorphic make over of earth surface resulting in significant damages to life and property. An attempt is made in this paper to identify landslides susceptibility regions in the Sharavathi river basin downstream using frequency ratio method based on the field investigations during July- November 2007. In this regard, base layers of spatial data such as topography, land cover, geology and soil were considered. This is supplemented with the field investigations of landslides. Factors that influence landslide were extracted from the spatial database. The probabilistic model -frequency ratio is computed based on these factors. Landslide susceptibility indices were computed and grouped into five classes. Validation of LHS, showed an accuracy of 89% as 25 of the 28 regions tallied with the field condition of highly vulnerable landslide regions. The landslide susceptible map generated for the downstream would be useful for the district officials to implement appropriate mitigation measures to reduce hazards.
Resumo:
Image fusion techniques are useful to integrate the geometric detail of a high-resolution panchromatic (PAN) image and the spectral information of a low-resolution multispectral (MSS) image, particularly important for understanding land use dynamics at larger scale (1:25000 or lower), which is required by the decision makers to adopt holistic approaches for regional planning. Fused images can extract features from source images and provide more information than one scene of MSS image. High spectral resolution aids in identification of objects more distinctly while high spatial resolution allows locating the objects more clearly. The geoinformatics technologies with an ability to provide high-spatial-spectral-resolution data helps in inventorying, mapping, monitoring and sustainable management of natural resources. Fusion module in GRDSS, taking into consideration the limitations in spatial resolution of MSS data and spectral resolution of PAN data, provide high-spatial-spectral-resolution remote sensing images required for land use mapping on regional scale. GRDSS is a freeware GIS Graphic User Interface (GUI) developed in Tcl/Tk is based on command line arguments of GRASS (Geographic Resources Analysis Support System) with the functionalities for raster analysis, vector analysis, site analysis, image processing, modeling and graphics visualization. It has the capabilities to capture, store, process, analyse, prioritize and display spatial and temporal data.
Resumo:
Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. The efficiency of a cache for this application critically depends on the placement function to reduce conflict misses. Traditional placement functions use a one-level mapping that naively partitions trie-nodes into cache sets. However, as a significant percentage of trie nodes are not useful, these schemes suffer from a non-uniform distribution of useful nodes to sets. This in turn results in increased conflict misses. Newer organizations such as variable associativity caches achieve flexibility in placement at the expense of increased hit-latency. This makes them unsuitable for L1 caches.We propose a novel two-level mapping framework that retains the hit-latency of one-level mapping yet incurs fewer conflict misses. This is achieved by introducing a secondlevel mapping which reorganizes the nodes in the naive initial partitions into refined partitions with near-uniform distribution of nodes. Further as this remapping is accomplished by simply adapting the index bits to a given routing table the hit-latency is not affected. We propose three new schemes which result in up to 16% reduction in the number of misses and 13% speedup in memory access time. In comparison, an XOR-based placement scheme known to perform extremely well for general purpose architectures, can obtain up to 2% speedup in memory access time.
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.
Resumo:
This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.
Resumo:
We consider precoding strategies at the secondary base station (SBS) in a cognitive radio network with interference constraints at the primary users (PUs). Precoding strategies at the SBS which satisfy interference constraints at the PUs in cognitive radio networks have not been adequately addressed in the literature so far. In this paper, we consider two scenarios: i) when the primary base station (PBS) data is not available at SBS, and ii) when the PBS data is made available at the SBS. We derive the optimum MMSE and Tomlinson-Harashima precoding (THP) matrix Alters at the SBS which satisfy the interference constraints at the PUs for the former case. For the latter case, we propose a precoding scheme at the SBS which performs pre-cancellation of the PBS data, followed by THP on the pre-cancelled data. The optimum precoding matrix filters are computed through an iterative search. To illustrate the robustness of the proposed approach against imperfect CSI at the SBS, we then derive robust precoding filters under imperfect CSI for the latter case. Simulation results show that the proposed optimum precoders achieve good bit error performance at the secondary users while meeting the interference constraints at the PUs.
Resumo:
This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.