61 resultados para cloud computing datacenter performance QoS
Resumo:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In ddition, some properties of the FD are discussed.
Resumo:
A new class of nets, called S-nets, is introduced for the performance analysis of scheduling algorithms used in real-time systems Deterministic timed Petri nets do not adequately model the scheduling of resources encountered in real-time systems, and need to be augmented with resource places and signal places, and a scheduler block, to facilitate the modeling of scheduling algorithms. The tokens are colored, and the transition firing rules are suitably modified. Further, the concept of transition folding is used, to get intuitively simple models of multiframe real-time systems. Two generic performance measures, called �load index� and �balance index,� which characterize the resource utilization and the uniformity of workload distribution, respectively, are defined. The utility of S-nets for evaluating heuristic-based scheduling schemes is illustrated by considering three heuristics for real-time scheduling. S-nets are useful in tuning the hardware configuration and the underlying scheduling policy, so that the system utilization is maximized, and the workload distribution among the computing resources is balanced.
Resumo:
This paper reports new results concerning the capabilities of a family of service disciplines aimed at providing per-connection end-to-end delay (and throughput) guarantees in high-speed networks. This family consists of the class of rate-controlled service disciplines, in which traffic from a connection is reshaped to conform to specific traffic characteristics, at every hop on its path. When used together with a scheduling policy at each node, this reshaping enables the network to provide end-to-end delay guarantees to individual connections. The main advantages of this family of service disciplines are their implementation simplicity and flexibility. On the other hand, because the delay guarantees provided are based on summing worst case delays at each node, it has also been argued that the resulting bounds are very conservative which may more than offset the benefits. In particular, other service disciplines such as those based on Fair Queueing or Generalized Processor Sharing (GPS), have been shown to provide much tighter delay bounds. As a result, these disciplines, although more complex from an implementation point-of-view, have been considered for the purpose of providing end-to-end guarantees in high-speed networks. In this paper, we show that through ''proper'' selection of the reshaping to which we subject the traffic of a connection, the penalty incurred by computing end-to-end delay bounds based on worst cases at each node can be alleviated. Specifically, we show how rate-controlled service disciplines can be designed to outperform the Rate Proportional Processor Sharing (RPPS) service discipline. Based on these findings, we believe that rate-controlled service disciplines provide a very powerful and practical solution to the problem of providing end-to-end guarantees in high-speed networks.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
In this paper, we shed light on the cross-layer interactions between the PHY, link and routing layers in networks with MIMO links operating in the diversity mode. Many previous studies assume an overly simplistic PHY layer model that does not sufficiently capture these interactions. We show that the use of simplistic models can in fact lead to misleading conclusions with regards to the higher layer performance with MIMO diversity. Towards understanding the impact of various PHY layer features on MIMO diversity, we begin with a simple but widely-used model and progressively incorporate these features to create new models. We examine the goodness of these models by comparing the simulated performance results with each, with measurements on an indoor 802.11 n testbed. Our work reveals several interesting cross-layer dependencies that affect the gains due to MIMO diversity. In particular, we observe that relative to SISO links: (a) PHY layer gains due to MIMO diversity do not always carry over to the higher layers, (b) the use of other PHY layer features such as FEC codes significantly influence the gains due to MIMO diversity, and (c) the choice of the routing metric can impact the gains possible with MIMO.
Resumo:
Hybrid wireless networks are extensively used in the superstores, market places, malls, etc. and provide high QoS (Quality of Service) to the end-users has become a challenging task. In this paper, we propose a policy-based transaction-aware QoS management architecture in a hybrid wireless superstore environment. The proposed scheme operates at the transaction level, for the downlink QoS management. We derive a policy for the estimation of QoS parameters, like, delay, jitter, bandwidth, availability, packet loss for every transaction before scheduling on the downlink. We also propose a QoS monitor which monitors the specified QoS and automatically adjusts the QoS according to the requirement. The proposed scheme has been simulated in hybrid wireless superstore environment and tested for various superstore transactions. The results shows that the policy-based transaction QoS management is enhance the performance and utilize network resources efficiently at the peak time of the superstore business.
Resumo:
Digest caches have been proposed as an effective method tospeed up packet classification in network processors. In this paper, weshow that the presence of a large number of small flows and a few largeflows in the Internet has an adverse impact on the performance of thesedigest caches. In the Internet, a few large flows transfer a majority ofthe packets whereas the contribution of several small flows to the totalnumber of packets transferred is small. In such a scenario, the LRUcache replacement policy, which gives maximum priority to the mostrecently accessed digest, tends to evict digests belonging to the few largeflows. We propose a new cache management algorithm called SaturatingPriority (SP) which aims at improving the performance of digest cachesin network processors by exploiting the disparity between the number offlows and the number of packets transferred. Our experimental resultsdemonstrate that SP performs better than the widely used LRU cachereplacement policy in size constrained caches. Further, we characterizethe misses experienced by flow identifiers in digest caches.
Resumo:
In this paper, we study how TCP and UDP flows interact with each other when the end system is a CPU resource constrained thin client. The problem addressed is twofold, 1) the throughput of TCP flows degrades severely in the presence of heavily loaded UDP flows 2) fairness and minimum QoS requirements of UDP are not maintained. First, we identify the factors affecting the TCP throughput by providing an in-depth analysis of end to end delay and packet loss variations. The results obtained from the first part leads us to our second contribution. We propose and study the use of an algorithm that ensures fairness across flows. The algorithm improves the performance of TCP flows in the presence of multiple UDP flows admitted under an admission algorithm and maintains the minimum QoS requirements of the UDP flows. The advantage of the algorithm is that it requires no changes to TCP/IP stack and control is achieved through receiver window control.
Resumo:
Based on dynamic inversion, a relatively straightforward approach is presented in this paper for nonlinear flight control design of high performance aircrafts, which does not require the normal and lateral acceleration commands to be first transferred to body rates before computing the required control inputs. This leads to substantial improvement of the tracking response. Promising results are obtained from six degree-offreedom simulation studies of F-16 aircraft, which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response (including elimination of non-minimum phase behavior) and reduced control magnitude. Next, a model-following neuron-adaptive design is augmented the nominal design in order to assure robust performance in the presence of parameter inaccuracies in the model. Note that in the approach the model update takes place adaptively online and hence it is philosophically similar to indirect adaptive control. However, unlike a typical indirect adaptive control approach, there is no need to update the individual parameters explicitly. Instead the inaccuracy in the system output dynamics is captured directly and then used in modifying the control. This leads to faster adaptation, which helps in stabilizing the unstable plant quicker. The robustness study from a large number of simulations shows that the adaptive design has good amount of robustness with respect to the expected parameter inaccuracies in the model.
Resumo:
Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes with multiple queues and multiple grades of service. We present a closed-loop multi-layered pricing scheme and propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. This is different from most adaptive pricing schemes in the literature that do not obtain a closed-loop state dependent pricing policy. The method that we propose finds optimal price levels that are functions of the queue lengths at individual queues. Further, we also propose a variant of the above scheme that assigns prices to incoming packets at each node according to a weighted average queue length at that node. This is done to reduce frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using both of our schemes over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our first scheme exhibits a throughput improvement in the range of 67-82% among all routes over the above scheme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Effective sharing of the last level cache has a significant influence on the overall performance of a multicore system. We observe that existing solutions control cache occupancy at a coarser granularity, do not scale well to large core counts and in some cases lack the flexibility to support a variety of performance goals. In this paper, we propose Probabilistic Shared Cache Management (PriSM), a framework to manage the cache occupancy of different cores at cache block granularity by controlling their eviction probabilities. The proposed framework requires only simple hardware changes to implement, can scale to larger core count and is flexible enough to support a variety of performance goals. We demonstrate the flexibility of PriSM, by computing the eviction probabilities needed to achieve goals like hit-maximization, fairness and QOS. PriSM-HitMax improves performance by 18.7% over LRU and 11.8% over previously proposed schemes in a sixteen core machine. PriSM-Fairness improves fairness over existing solutions by 23.3% along with a performance improvement of 19.0%. PriSM-QOS successfully achieves the desired QOS targets.
Resumo:
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.