44 resultados para chromosome condensation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistically steady humidity distribution resulting from an interaction of advection, modelled as an uncorrelated random walk of moist parcels on an isentropic surface, and a vapour sink, modelled as immediate condensation whenever the specific humidity exceeds a specified saturation humidity, is explored with theory and simulation. A source supplies moisture at the deep-tropical southern boundary of the domain and the saturation humidity is specified as a monotonically decreasing function of distance from the boundary. The boundary source balances the interior condensation sink, so that a stationary spatially inhomogeneous humidity distribution emerges. An exact solution of the Fokker-Planck equation delivers a simple expression for the resulting probability density function (PDF) of the wate-rvapour field and also the relative humidity. This solution agrees completely with a numerical simulation of the process, and the humidity PDF exhibits several features of interest, such as bimodality close to the source and unimodality further from the source. The PDFs of specific and relative humidity are broad and non-Gaussian. The domain-averaged relative humidity PDF is bimodal with distinct moist and dry peaks, a feature which we show agrees with middleworld isentropic PDFs derived from the ERA interim dataset. Copyright (C) 2011 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During meiosis, long-range interaction between homologous chromosomes is thought to be crucial for homology recognition, exchange of DNA strands, and production of normal haploid gametes. However, little is known about the identity of the proteins involved and the actual molecular mechanism(s) by which chromosomes recognize and recombine with their appropriate homologous partners. Single-molecule analyses have the potential to provide insights into our understanding of this fascinating and long-standing question. Using atomic force microscopy and magnetic tweezers techniques, we discovered that Hop1 protein, a key structural component of Saccharomyces cerevisiae synaptonemal complex, exhibits the ability to bridge noncontiguous DNA segments into intramolecular stem-loop structures in which the DNA segments appear to be fully synapsed within the filamentous protein stems. Additional evidence suggests that Hop1 folds DNA into rigid protein DNA filaments and higher-order nucleoprotein structures. Importantly, Hop1 promotes robust intra- and intermolecular synapsis between double-stranded DNA molecules, suggesting that juxtaposition of DNA sequences may assist in strand exchange between homologues by recombination-associated proteins. Finally, the evidence from ensemble experiments is consistent with the notion that Hop1 causes rigidification of DNA molecules. These results provide the first direct evidence for long-range protein-mediated DNA DNA synapsis, independent of crossover recombination, which is presumed to occur during meiotic recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with amixture of tri- and tetra-imidazole donors led to the self-sorting of a Pd-7 molecular boat with an internal nanocavity, which catalyses the Knoevenagel condensation of a series of aromatic aldehydes with 1,3-dimethylbarbituric acid and Meldrum's acid in aqueous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient and efficient one-pot synthesis of benzofurans 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n, 3o, 3p, 3q, 3r, 3s, 3t has been described from 2-hydroxy acetophenones and phenacyl chlorides in the presence of DBU. The procedure was applicable for a variety of phenacyl chlorides and provides a variety of benzofurans with higher yields. DBU acts as a base and as well as nucleophiles. All the derivatives were subjected to in vitro antioxidant screenings against representative 2,2-diphenyl-1-picryl-hydrazyl and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals and results worth for further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/XO system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order. In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of In2O3 octahedrons is carried out successfully by heating Indium metal pieces in air ambient. The sample is characterized by scanning electron microscopy (SEM), Energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and Raman spectroscopy. The as-prepared In2O3 octahedrons are highly crystalline and exhibit body centered cubic structure. Room temperature and temperature (293-453K) dependence photoluminescence reveals a deep levelbroad emission of yellowish-orange spectra centered around 605 nm. The emission is due to the presence of defect levels in the band gap of materials.