250 resultados para chloride solutions
Resumo:
Flow-insensitive solutions to dataflow problems have been known to be highly scalable; however also hugely imprecise. For non-separable dataflow problems this solution is further degraded due to spurious facts generated as a result of dependence among the dataflow facts. We propose an improvement to the standard flow-insensitive analysis by creating a generalized version of the dominator relation that reduces the number of spurious facts generated. In addition, the solution obtained contains extra information to facilitate the extraction of a better solution at any program point, very close to the flow-sensitive solution. To improve the solution further, we propose the use of an intra-block variable renaming scheme. We illustrate these concepts using two classic non-separable dataflow problems --- points-to analysis and constant propagation.
Resumo:
Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.
Resumo:
The stability of the steady-state solutions of mode-locking of cw lasers by a fast saturable absorber is imvestigated. It is shown that the solutions are stable if the condition (Ps/Pa) = (2/3) (P0Pa) is satisfied, where (Ps/Pa) is the steady-state la ser power, (P0/Pa) is the power at mode-locking threshold, and Pa is the saturated power of the absorber.
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
Dendrite structures of ice produced on undirectional solidification of ternary and quaternary aqueous solutions have been studied. Upon freezing, solutions containing more than one solute produce plate-shaped dendrites of ice. The spacing between dendrites increase linearly with the distance from the chill surface and the square root of local solidification time (or square root of inverse freezing rate) for any fixed composition. For fixed freezing conditions, the dendrite spacings from multicomponent aqueous solutions were a function of the concentrations and diffusion coefficients of the individual solutes. The dendrite spacing produced by freezing of a solution was changed by the addition of a solute different from those already present. If the main diffusion coefficient of the added solute is higher than that of solutes already present, the dendrite spacing is increased and vice versa. The dendrite spacing in multi-component systems increases with the total solute concentration if the constituent solutes are present in equal amounts. The dendrite spacing obtained on freezing of these dilute multicomponent solutions can be expressed by regression equations of the type Image Full-size image (2K) where L is the dendrite spacing in microns, C1, C2 and C3 are concentrations of individual solutes, Θf is the total freezing time and A1 −A8 are constants. A Yates analysis of the dendrite spacings in a factorial design of quaternary solutions indicates that there are strong interactions between individual solutes in regard to their effect on the dendrite spacings. A mass transport analysis has been used to calculate the interdendritic supersaturation ΔC of the individual solutes, the supercooling in the interdendritic liquid ΔT, and the transverse growth velocity of the dendrites, VT. In ternary solutions if two solutes are present in equal amount the supersaturation of the solute with higher main diffusion coefficient is lower, and vice versa. If a solute with higher main diffusion coefficient is added to a binary solution, the interface growth velocity, the interdendritic supersaturation of the base solute and the interdendritic supercooling increase with the quantity of solute added.
Resumo:
The reactions of sulphuryl fluoride, sulphuryl chlorofluoride and sulphuryl chloride with the amines tert-butylamine, benzylamine, piperidine, pyridine and quinoline have been investigated. The primary and secondary amines react with the elimination of hydrogen halides and formation of S---N bonds whereas tertiary amines form 1:2 adducts.
Resumo:
The classic work of Richardson and Gaunt [1 ], has provided an effective means of extrapolating the limiting result in an approximate analysis. From the authors' work on "Bounds for eigenvalues" [2-4] an interesting alternate method has emerged for assessing monotonically convergent approximate solutions by generating close bounds. Whereas further investigation is needed to put this work on sound theoretical foundation, we intend this letter to announce a possibility, which was confirmed by an exhaustive set of examples.
Resumo:
In der vorliegenden Arbeit wird die Methode der parametrischen Differentiation angewendet, um ein System nichtlinearer Gleichungen zu lösen, das zwei- und dreidimensionale freie, konvektive Grenzschichströmungen bzw. eine zweidimensionale magnetohydrodynamische Grenzschichtströmung beherrscht. Der Hauptvorteil dieser Methode besteht darin, daß die nichlinearen Gleichungen auf lineare reduziert werden und die Nichtlinearität auf ein System von Gleichungen erster Ordnung beschränkt wird, das, verglichen mit den ursprünglichen Nichtlinearen Gleichungen, viel leichter gelöst werden kann. Ein anderer Vorzug der Methode ist, daß sie es ermöglicht, die Lösung von einer bekannten, zu einem bestimmten Parameterwert gehörigen Lösung aus durch schrittweises Vorgehen die Lösung für den gesamten Parameterbereich zu erhalten. Die mit dieser Methode gewonnenen Ergebnisse stimmen gut mit den entsprechenden, mit anderen numerischen Verfahren erzielten überein.
Resumo:
Ammonium perchlorate-potassium perchlorate mixtures, upon pelletization, form a series of homogeneous solid solutions as manifested by X-ray powder diffractograms. Scanning electron microscopic studies throw light on the mechanism of the solid-solution formation. Solid solutions of ammonium perchlorate-potassium perchlorate have also been obtained by a modified cocrystallization technique. The thermal and combustion behavior of the solid solutions have also been studied, using the DTA technique and the Crawford strand burner.
Resumo:
Abstract is not available.
Resumo:
The stress-optical coefficients C = (n3/2) (q11−q12) and C′ = (n3/2)q44 of RbCl and RbBr crystals have been measured at room temperature (26°C) over the wave length range 5750-2500 A.
Resumo:
A method has been presented for constructing non-separable solutions of homogeneous linear partial differential equations of the type F(D, D′)W = 0, where D = ∂/∂x, D′ = ∂/∂y, Image where crs are constants and n stands for the order of the equation. The method has also been extended for equations of the form Φ(D, D′, D″)W = 0, where D = ∂/∂x, D′ = ∂/∂y, D″ = ∂/∂z and Image As illustration, the method has been applied to obtain nonseparable solutions of the two and three dimensional Helmholtz equations.
Application of Artificial Viscosity in Establishing Supercritical Solutions to the Transonic Integra
Resumo:
The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.