82 resultados para cell cycle checkpoint
Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells
Resumo:
Hydantoin derivatives possess a variety of biochemical and pharmacological properties and consequently are used to treat many human diseases. However, there are only few studies focusing on their potential as cancer therapeutic agents. In the present study, we have examined anticancer properties of two novel spirohydantoin compounds, 8-(3,4-difluorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1] octane-3,4'-imidazolidine]-2',5'-dione (DFH) and 8-(3,4-dichlorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1]octane-3,4'-imidazolidine]-2',5'-dione (DCH). Both the compounds exhibited dose- and time-dependent cytotoxic effect on human leukemic cell lines, K562, Reh, CEM and 8ES. Incorporation of tritiated thymidine ([H-3) thymidine) in conjunction with cell cycle analysis suggested that DFH and DCH inhibited the growth of leukemic cells. Downregulation of PCNA and p-histone H3 further confirm that the growth inhibition could be at the level of DNA replication. Flow cytometric analysis indicated the accumulation of cells at subG1 phase suggesting induction of apoptosis, which was further confirmed and quantified both by fluorescence-activated cell sorting (FACS) and confocal microscopy following annexin V-FITC/propidium iodide (PI) staining. Mechanistically, our data support the induction of apoptosis by activation of the mitochondrial pathway. Results supporting such a model include, elevated levels of p53, and BAD, decreased level of BCL2, activation and cleavage of caspase 9, activation of procaspase 3, poly (ADP-ribosyl) polymerase (PARP) cleavage, downregulation of Ku70, Ku80 and DNA fragmentation. Based on these results we discuss the mechanism of apoptosis induced by DFH and its implications in leukemia therapy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In order to explore the anticancer effect associated with the thiazolidinone framework, several 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives 5(a-1) were synthesized. Variation in the functional group at C-terminal of the thiazolidinone led to set of compounds bearing amide moiety. Their chemical structures were confirmed by H-1 NMR, IR and Mass Spectra analysis. These thiazolidinone compounds containing furan moiety exhibits moderate to strong antiproliferative activity in a cell cycle stage-dependent and dose dependent manner in two different human leukemia cell lines. The importance of the electron donating groups on thiazolidinone moiety was confirmed by MTT and Trypan blue assays and it was concluded that the 4th position of the substituted aryl ring plays a dominant role for its anticancer property. Among the synthesized compounds, 5e and 5f have shown potent anticancer activity on both the cell lines tested. To rationalize the role of electron donating group in the induction of cytotoxicity we have chosen two molecules (5e and 5k) having different electron donating group at different positions. LDH assay, Flow cytometric analysis and DNA fragmentation suggest that 5e is more cytotoxic and able to induce the apoptosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Effect of Temperature Variation on Sister Chromatid Exchange Frequency in Cultured Human Lymphocytes
Resumo:
The effect of temperature variation on sister chromatid exchange (SCE) frequencies in human lymphocytes was studied. An increase as well as decrease in incubation temperature of cells leads to a higher frequency of sister chromatid exchanges than in cultures grown at 37°C. In addition, it was observed that mitotic: index and cell cycle duration were affected by low temperature.
Resumo:
We report here the synthesis and preliminary evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives 6(a–k) and their precursors 5(a–k) as potential chemotherapeutic agents. In each case, the structures of the compounds were determined by FTIR, 1H NMR and mass spectroscopy. Among the synthesized molecules, methyl 1-(4-methoxyphenethyl)-2-(4-fluoro-3-nitrophenyl)-1H-benzimidazole-5-carboxylate (5a) induced maximum cell death in leukemic cells with an IC50 value of 3 μM. Using FACS analysis we show that the compound 5a induces S/G2 cell cycle arrest, which was further supported by the observed down regulation of CDK2, Cyclin B1 and PCNA. The observed downregulation of proapoptotic proteins, upregulation of antiapoptotic proteins, cleavage of PARP and elevated levels of DNA strand breaks indicated the activation of apoptosis by 5a. These results suggest that 5a could be a potent anti-leukemic agent.
Resumo:
Background and Objective: Arecoline, an arecanut alkaloid present in the saliva of betel quid chewers, has been implicated in the pathogenesis of a variety of inflammatory oral diseases, including oral submucous fibrosis and periodontitis. To understand the molecular b asis of arecoline action in epithelial changes associated with these diseases, we investigated the effects of arecoline on human keratinocytes with respect to cell growth regulation and the expression of stress-responsive genes.Material and Methods:Human keratinocyte cells (of the HaCaT cell line) were treated with arecoline, following which cell viability was assessed using the Trypan Blue dye-exclusion assay, cell growth and proliferation were analyzed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and 5-bromo-2-deoxyuridine incorporation assays, cell cycle arrest and generation of reactive oxygen species were examined using flow cytometry, and gene expression changes were investigated using the reverse transcription-polymerase chain reaction technique. The role of oxidative stress, muscarinic acetylcholine receptor and mitogen-activated protein kinase (MAPK) pathways were studied using specific inhibitors. Western blot analysis was performed to study p38 MAPK activation.Results:Arecoline induced the generation of reactive oxygen species and cell cycle arrest at the G1/G0 phase in HaCaT cells without affecting the expression of p21/Cip1. Arecoline-induced epithelial cell death at higher concentrations was caused by oxidative trauma without eliciting apoptosis. Sublethal concentrations of arecoline upregulated the expression of the following stress-responsive genes: heme oxygenase-1; ferritin light chain; glucose-6-phosphate dehydrogenase; glutamate-cysteine ligase catalytic subunit; and glutathione reductase.Additionally, there was a dose-dependent induction of interleukin-1alfa mRNA by arecoline via oxidative stress and p38 MAPK activation. Conclusion:our data highlight the role of oxidative stress in arecoline-mediated cell death, gene regulation and inflammatory processes in human keratinocytes.
Resumo:
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy, Several genes have been identified and cloned from the carrot system, These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using a Cuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.
Resumo:
Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.
Resumo:
The silk glands of mulberry silkworm Bombyx mori are endoreplicating tissues in which the genomic DNA undergoes multiple rounds of replication without mitosis and nuclear division. In the absence of normal mitotic division, the cell cycle essentially alternates between the G1 and S phases. Cyclin E is crucial for the G1/S transition in both mitotic and endoreplicating cycles. We have cloned and characterized cyclin E (cyclin box) from B. mori, which is nearly identical to the Drosophila cyclin E box except for an insertion of 21 amino acids. Two distinct cyclin E transcripts (1.7 and 2.1 kb) were detected in the silk-gland cells of B. mori and in the B. mori-derived embryonic cell line, BmN. Using anti Cyclin E antibodies two protein bands of 52 and 44 kDa were detected in silk glands and BmN cells at Comparable levels. Both BmN- and the silk-gland cells showed the presence of the interacting kinase Cdk2. Transcripts of the mitotic cyclin, cyclin B, were barely detectable in the endoreplicating silk-gland cells and amounted to only 4-7% of that seen in the mitotically dividing BmN cells. The near absence of cyclin B transcripts and the abundant expression of cyclin E in the silk glands correlate well with the alternation of only G1 and S phases without the intervening mitosis in these cells. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The fungicide Bavistin was assessed for mutagenic potential by various assays. Bavistin was found to be unable to induce gene mutation in Salmonella typhimurium, but it was able to induce transfection inhibition in Mycobacterium smegmatis. Bavistin was able to induce immediate genotoxic effects in plants but these were not carried through in development as in the long term no genotoxic effects were observed by the progeny test. Bavistin did induce micronuclei formation and did cause an increase in the ratio of normochromatic to polychromatic erythrocytes in mice. It was able to induce a very low frequency of sister-chromatid exchange in human lymphocytes and in addition, it was observed that the chemical affected the mitotic index but did not affect the cell cycle duration. Present studies indicate that the pesticide shows a positive response in 4 out of 5 different test systems (Table 8) and most of the observations support that Bavistin is genotoxic.
Resumo:
We have designed and synthesized three novel compounds, 5-isopropylidiene derivatives of 3-dimethyl-2-thio-hydantoin (ITH-1), 3-ethyl-2-thio-2,4-oxazolidinedione (ITO-1), and 5-benzilidene-3-ethyl rhodanine (BTR-1), and have tested their chemotherapeutic properties. Our results showed that all three compounds induced cytotoxicity in a time-and concentration-dependent manner on leukemic cell line, CEM. Among the compounds tested, BTR-1 was 5- to 7-fold more potent than ITH-1 and ITO-1 when compared by trypan blue and MTT assays. IC50 value of BTR-1 was estimated to be <10 mu M. Both cell cycle analysis and tritiated thymidine assays revealed that BTR-1 affects DNA replication by inducing a block at S phase. BTR-1 treatment led to increased level of ROS production and DNA strand breaks suggesting activation of apoptosis for induction of cell death. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.