138 resultados para bk: Märchen
Resumo:
In this paper, a single-story, bilinear-hysteretic structure, square in plan and supported on four columns, subjected to two horizontal ground motions is studied. The model is assumed to possess three degrees of freedom, viz., translational displacements along the two horizontal orthogonal directions and a rotation about the vertical axis. Interaction of the bending moments in the two perpendicular directions has been considered.
Resumo:
The aim of this study is to obtain the fracture characteristics of low and medium compressive strength self consolidating concrete (SCC) for notched and un-notched plain concrete beams by using work of fracture G(F) and size effect model G(f) methods and comparing them with those of normal concrete and high performance concrete. The results show that; (i) with an increase in compressive strength, G(F) increases and G(f) decreases; (ii) with an increase in depth of beam, the decrease in nominal stress of notched beam is more when compared with that of a notchless beam.
Resumo:
The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.
Resumo:
Beams with a central edge crack, as well as other noncentral vertical and inclined edge cracks distributed symmetrically, subjected to three-point as well as four-point bending, are analysed using the finite element technique. Values of stress intensity factor K1 at the central crack tip for a crack-to-beam depth ratio Image equal to 0.5, are calculated for various cracked-beam configurations, using the compliance calibration technique as well as method of strain energy release rate. These are compared with the value of K1 for the case of a beam with central edge crack alone. Results of the present parametric study are used to specify the range of values pertaining to basic parameters such as crack-to-beam depth ratios, geometry and position with respect to central edge crack, of other macrocracks for which interaction exists. Accordingly, the macrocracks are classified as either interacting or noninteracting types. Hence for noninteracting types of cracks, analytical expressions available for the determination of K1 in the case of beam with a central edge crack alone, are applicable.
Resumo:
(1S,4R,5R,8S, IOR,12S)-4-Hydroxy-15,16-epoxycleroda-2,13 (16), 14-trieno- 17,12:18,1-biscarbolactone,C20H2206, Mr = 358.2, m.p. = 453-454 K,orthorhombic, P212121, a = 7.3869 (6), b = 11.986 (1),c=19.896(2) A, V=1761.65A 3, Z=4, D x=1.351, Din(by flotation)= 1.349gem -3, 2(CuKa)=1.5418 A, /l = 8.36 cm -1, F(000) = 760, T= 295 K,R = 0.0432 for 1662 observed reflections. Two terpenerings, two ~-lactones, two methyl groups, a tertiary hydroxyl group and a fl-substituted furan ring are present in the structure. The H atoms at C(12) and C(8) are a- and fl-oriented. The terpene ring A is locked into a boat conformation by the C(1)-C(4) lactone bridge. The furan ring is attached equatoriaUy at atom C(12). The hydroxyl group is involved in intramolecular hydrogen bonding.
Resumo:
The binding characteristics of the antibiotics to nuclei and their effect on the permeability of nuclear membrane with respect to histones and ribonucleic acids have been investigated. The binding constant for chromomycin A3 was found to be 1.4 × 104M?1 and number of binding sites was equal to 3.48 ± 1.08 × 1012 molecules/nuclei. The antibiotic chromomycin A3 enhanced the uptake of lysine-rich histone, actinomycin D decreased the uptake and ethidium bromide had no effect. Chromomycin A3 also enhanced the release of acid insoluble fraction containing RNA from the nuclei, actinomycin D and ethidium bromide inhibited the release of acid insoluble fraction containing RNA. The relevance of this finding to the role of nuclear envelope in understanding the mechanism of action of the antibiotic has been discussed.
Resumo:
A BEM formulation to obtain the inelastic response of R.C. Beam-Column joints subjected to sinusoidal loading along the boundary is presented. The equations of motion are written along with kinematical and constitutive equations. The dynamic reciprocal theorem is presented and the temporal dependence is removed by assuming steady state response.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
Two storey bilinear hysteretic structures have been studied with a view to exploring the possibility of using the dynamic vibration absorber concept in earthquake-resistant design. The response of the lower storey has been optimized for the Taft 1952, S69°E accelerogram with reference to parameters such as frequency ratio, yield strength ratio and mass ratio. The influence of viscous damping has also been examined.