148 resultados para binary-Lie algebra
Resumo:
For five binary liquid systems CS2+CH3CN, CS2+CH3NO2, CS2+(CH3CO)2O, C6H12+(CH3CO)2O, n-C7H16+(CH3CO)2O, the electrical resistance has been measured near the critical solution temperatures. The behaviour is universal. Below Tc, the conductivities of the two phases follow σ1−σ2 β, where = T−Tc Tc with β≈0.35. In the one phase region with b≈0.35±0.1 and is positive in some cases and negative in others.
Resumo:
Scaling relations between the critical indices are derived for two similar systems exhibiting λ lines: binary liquid systems and ferromagnets under pressure. In addition to the usual scaling relations, this procedure gives information about other weakly divergent quantities like isothermal compressibility and thermal expansion. Suggestions for more detailed investigations are made.
Resumo:
The system CS2 + CH3NO2 shows β=0.315±0.004 over 10-6<ε=|T-Tc| / Tc<2-10-1 with no indication of a classical value ½ even far away from Tc. The diameter shows a curvature and is of the form - c+b ε+fε7 / 8exp(-gεh).
Resumo:
Glass transition and relaxation of the glycerol-water (G-W) binary mixture system have been studied over the glycerol concentration range of 5-85 mol% by using the highly sensitive technique of electron spin resonance (ESR). For the water rich mixture the glass transition,sensed by the dissolved spin probe, arises from the vitrified mesoscopic portion of the binary system. The concentration dependence of the glass transition temperature manifests a closely related molecular level cooperativity in the system. A drastic change in the mesoscopic structure of the system at the critical concentration of 40 mol is confirmed by an estimation of the spin probe effective volume in a temperature range where the tracer reorientation is strongly coupled to the system dynamics.
Resumo:
A Trotter product formula is established for unitary quantum stochastic processes governed by quantum stochastic differential equations with constant bounded coefficients.
Resumo:
The self-diffusion properties of pure CH4 and its binary mixture with CO2 within MY zeolite have been investigated by combining an experimental quasi-elastic neutron scattering (QENS) technique and classical Molecular dynamics simulations. The QENS measurements carried out at 200 K led to an unexpected self-diffusivity profile for Pure CH4 with the presence of a maximum for a loading of 32 CH4/unit cell, which was never observed before for the diffusion of apolar species in azeolite system With large windows. Molecular dynamics simulations were performed using two distinct microscopic models for representing the CH4/NaY interactions. Depending on the model, we are able to fairly reproduce either the magnitude or the profile of the self-diffusivity.Further analysis allowed LIS to provide some molecular insight into the diffusion mechanism in play. The QENS measurements report only a slight decrease of the self-diffusivity of CH4 in the presence of CO2 when the CO2 loading increases. Molecular dynamics simulations successfully capture this experimental trend and suggest a plausible microscopic diffusion mechanism in the case of this binary mixture.
Resumo:
The coexistence curve of the carbondisulphide-acetic anhydride system has been measured. The shape of the curve in the critical region (Xc ≈ 70.89 mole % mole % CS2 and Tc ≈ 30.56° C) is determined by the equation |X′ - X″| = Bx (1 - T/Tc)β with the critical indices β = 0.34 ± 0.01 and Bx = 1.7 ± 0.1 over a range 10-6 < (Tc - T)/Tc < 10-2. The values of β and Bx agree with those of other systems and the theoretical predictions of the Ising model.
Resumo:
Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.
Resumo:
This paper describes a hardware implementation of a two-way converter logic by which conversion between numbers from positive to negative binary representation is possible. Index terms: (i) Negative radix, (ii) Positive radix, (iii) Two-way conversion.
Resumo:
Binary room temperature molten electrolytes based on acetamide and zinc perchlorate have been prepared and characterized. The electrolytes are found to be highly zinc ion-conducting with very favorable physicochemical and electrochemical characteristics. Raman and infrared spectroscopic studies reveal the presence of large free-ion concentration in the molten liquid. This is corroborated by the high conductivity observed under ambient conditions. Rechargeable zinc batteries assembled using gamma-MnO2 as the cathode and Zn as the anode with the molten electrolyte show high discharge capacities over several cycles, indicating excellent reversibility. This unique class of acetamide-based, room temperature molten liquids may become viable and green alternative electrolytes for rechargeable zinc-based secondary batteries. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We study an abelian Chern-Simons theory on a five-dimensional manifold with boundary. We find it to be equivalent to a higher-derivative generalization of the abelian Wess-Zumino-Witten model on the boundary. It contains a U(1) current algebra with an operational extension.