80 resultados para barium sulfate
Resumo:
Artificial superlattices of SrTiO3 and BaZrO3 were grown epitaxially with different periodicities on SrRuO3 coated (00 1) SrTiO3 substrates by pulsed excimer laser ablation. Superlattices were structurally characterized by X-Ray theta-2 theta diffraction data. Electrical characterization was done in metal-insulation-metal configuration. Capacitance-voltage measurements showed limited amount of tunability. The DC field induced tunability has been observed to be sensitive to the periodicity of the superlattices, hence the effective strain present in the layers. Hysteretic behaviour in capacitance-voltage (C-V) and polarization versus electric field (P-E) results from the superlattices also indicate the sensitivity of the interfaces. Interfacial strain is supposed to be the most probable cause for such a behaviour which is also manifested in the variation of dielectric constant with individual layer thicknesses. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Formation of oxygen radicals during reduction of H2O2 or diperoxovanadate with vanadyl sulfate or ferrous sulfate was indicated by the 1:2:2:1 electron spin resonance (ESR) signals of the DMPO adduct typical of standard radical dotOH radical. Signals derived from diperoxovanadate remained unchanged in the presence of ethanol in contrast to those from H2O2. This gave the clue that they represent a different radical, possibly radical dotOV(O2)2+, formed on breaking a peroxo-bridge of diperoxovanadate complex. The above reaction mixtures evolved dioxygen or, when NADH was present, oxidized it rapidly which was accompanied by consumption of dioxygen. Operation of a cycle of peroxovanadates including this new radical is suggested to explain these redox activities both with vanadyl and ferrous sulfates. It can be triggered by ferrous ions released from cellular stores in the presence of catalytic amounts of peroxovanadates.
Resumo:
A systematic study has been made of the crystal co-ordination of the barium ion in various compounds whose structures have been solved. Apart from the more common co-ordination polyhedra which are enumerated in text-books, a number of new polyhedra have been identified, particularly in cases where the co-ordination numbers are unusual, such as ten or eleven. According to the radius-ratio rule of Pauling, a co-ordination number of nine or ten is normally expected for the barium ion. The present investigations, however, reveal that it shows a variety of co-ordinations with ligancies from six up to twelve. Some of the factors that might possibly enter in explaining this wide range of co-ordination numbers are discussed. It appears as though the part played by the Ba2+ ion in deciding the structure is secondary, limiting itself only to occupying vacant spaces provided by other atoms in the crystal.
Resumo:
The Raman spectrum of diglycine barium chloride monohydrate in the single crystal form has been recorded using λ 2536·5 excitation. 43 Raman lines (9 lattice and 34 internal) have been recorded. Satisfactory assignments have been given for most of the observed Raman lines. It is concluded from a comparison of the Raman spectrum of this compound with those of glycine and of other addition compounds of glycine, that the glycine unit exists in the zwitterion form in the structure of diglycine barium chloride monohydrate.
Resumo:
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment.The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Infrared spectra of trichloroacetates of Cu, Ca, Sr and Ba were studied in order to investigate the effect of coordination on the vibration spectra of the ligand. The shifts of the antisymmetric and symmetric COO- stretching frequencies are explained on the basis of the type of co-ordination of the COO- group to the metal ion. From the spectra it is established that the coordination of the COO- group to metal is different for trichloroacetates and monochloroacetates.
Resumo:
The first two members of the new TlSrn+1−xLnxCunO2n+3+δ (Ln=La, Pr, or Nd) series of superconducting cuprates possessing 1021 and 1122 type structures are described. The n=1 (1021) members with Tcs around 40 K have electrons or holes as the majority charge carriers depending on x. The n=2 (1122) cuprate (Ln=Pr or Nd) shows a Tc in the 80–90 K range.
Resumo:
An organically templated iron(II) sulfate of the composition [H3N(CH2)2NH2(CH2)2(NH3]4[FeII 9F18(SO4)6]â9H2O with a distorted Kagome structure has been synthesized under solvothermal conditions in the presence of diethylenetriamine. The distortion of the hexagonal bronze structure comes from the presence of two different types of connectivity between the FeF4O2 octahedra and the sulfate tetrahedra. This compound exhibits magnetic properties different from those of an Fe(II) compound with a perfect Kagome structure and is a canted antiferromagnet at low temperatures.
Resumo:
A detailed evaluation of size, shape and microstrains of BaTiO3 crystallites produced by hydrothermal crystallization at 90 – 180 °C and 0.1 – 1.2 MPa, from amorphous TiO2· xH2O (3 < × < 8) gel and aqueous Ba(OH)2 is presented, using X-ray line-broadening and TEM studies. Whereas the concentration of Ba(OH)2 and the acceptor impurities affect the crystallite shape, the stoichimetry with respect to Ba/Ti, donor as well as acceptor impurities, and the temperature of crystallization influence the microstrains. It is shown that strains in the crystallites are related to the point defects in the lattice. Compensation of the residually present hydroxyl ions in the oxygen sublattice by cation vacancies results in strains leading to metastable presence of the cubic phase at room temperature. Studies on the diffuse phase transition behaviour of these submicron powders show that the stable tetragonal phase is produced only on annealing at high temperatures where the mobility of cations vacancies are larger. Heat-treatment reduces anisotropy and strain in undoped samples, whereas annealing is less effective in doped materials. Comparison of the crystillite size by TEM showed better agreement with the Warren—Averbach method.
Resumo:
X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.
Resumo:
Phase-pure samples of barium magnesiotitanate, BaMg6Ti6O19 (BMT) are prepared by the wet chemical `gel-carbonate' method wherein the formation of BMT is complete below 950 degrees C as a result of the reaction between nanoparticles of BaCO3, MgO and TiO2. BMT powders are sintered at 1350-1450 C to dense ceramics. Extensive melting is noticed when the bulk composition falls between 0.4MgTiO(3)+0.6BaTiO(3)) and (0.6MgTiO(3)+0.4BaTiO(3)) along the MgTiO3-BaTiO3 tie-line in BaO-MgO-TiO2, phase diagram. Dielectric properties of sintered (BMT) ceramics have been investigated which showed epsilon similar or equal to 39 at 2 GHz, quality factor Q >= 10,000 and positive temperature coefficient of dielectric constant around 370 ppm degrees C-1.
Resumo:
The reaction of cadmium sulfate in the presence of polyazaheterocyclic organic molecules gave rise to a variety of new cadmium sulfate phases in water containing solvothermal reaction. The compounds have two- (I) and three-dimensionally (II-VI) extended structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The linkages between the Cd2+ and (SO4)2- ions form one- (II), two- (I, III, and IV), and three- (V and VI) dimensionally extended cadmium sulfate phases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one- and two-dimensional structures. The inter-connectivity between the two units gives rise to the observed structures. The presence of Cd-O-Cd chains and Cd-O-Cd layers in some of the structures is noteworthy. The adsorption/desorption studies suggest that the cadmium sulfate phases adsorb/desorb anionic dyes selectively in the presence of water/ethanol, respectively. The photocatalytic degradation studies on cationic dyes under UV-irradiation indicate modest activity. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicate good catalytic behavior. The various properties exhibited by the cadmium sulfate phases suggest that these compounds are versatile. All the compounds were characterized by powder X-ray diffraction, thermogravimetric analysis, infrared (IR) and UV-visible studies.