48 resultados para bandgap


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patches with variants of fractal Minkowski curves as boundaries are used here to design a polarization dependent electromagnetic bandgap surface. Reflection phases of the proposed structure depends upon the polarization state of the incident wave and frequency. The phase difference between the x-polarized and y-polarized components of the reflected wave can be as high as 200 degrees and this is achieved without excessive increase in unit cell dimensions and vias. The performance of the surface is analyzed numerically using CST microwave studio. The potential applications of the surface are in polarization conversion surfaces, polarimetric radar calibration, and RCS reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining the electronic properties of graphene(1,2) and molybdenum disulphide (MoS2)(3-6) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids(7,8), but they do not make use of the photosensitivity of MoS2, which arises from its optical-range bandgap(9). Here, we demonstrate that graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity. The responsivity of the hybrids was found to be nearly 1 x 10(10) A W-1 at 130 K and 5 x 10(8) A W-1 at room temperature, making them the most sensitive graphene-based photodetectors. When subjected to time-dependent photoillumination, the hybrids could also function as a rewritable optoelectronic switch or memory, where the persistent state shows almost no relaxation or decay within experimental timescales, indicating near-perfect charge retention. These effects can be quantitatively explained by gate-tunable charge exchange between the graphene and MoS2 layers, and may lead to new graphene-based optoelectronic devices that are naturally scalable for large-area applications at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) containing copolymers have gained a lot of interest in organic optoelectronics with great potential in organic photovoltaics. In this work, DPP based statistical copolymers, with slightly different bandgap energies and a varying fraction of donor-acceptor ratio are investigated using monochromatic photocurrent spectroscopy and Fourier-transform photocurrent spectroscopy (FTPS). The statistical copolymer with a lower DPP fraction, when blended with a fullerene derivative, shows the signature of an inter charge transfer complex state in photocurrent spectroscopy. Furthermore, the absorption spectrum of the blended sample with a lower DPP fraction is seen to change as a function of an external bias, qualitatively similar to the quantum confined Stark effect, from where we estimate the exciton binding energy. The statistical copolymer with a higher DPP fraction shows no signal of the inter charge transfer states and yields a higher external quantum efficiency in a photovoltaic structure. In order to gain insight into the origin of the observed charge transfer transitions, we present theoretical studies using density-functional theory and time-dependent density-functional theory for the two pristine DPP based statistical monomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) containing copolymers have gained a lot of interest in organic optoelectronics with great potential in organic photovoltaics. In this work, DPP based statistical copolymers, with slightly different bandgap energies and a varying fraction of donor-acceptor ratio are investigated using monochromatic photocurrent spectroscopy and Fourier-transform photocurrent spectroscopy (FTPS). The statistical copolymer with a lower DPP fraction, when blended with a fullerene derivative, shows the signature of an inter charge transfer complex state in photocurrent spectroscopy. Furthermore, the absorption spectrum of the blended sample with a lower DPP fraction is seen to change as a function of an external bias, qualitatively similar to the quantum confined Stark effect, from where we estimate the exciton binding energy. The statistical copolymer with a higher DPP fraction shows no signal of the inter charge transfer states and yields a higher external quantum efficiency in a photovoltaic structure. In order to gain insight into the origin of the observed charge transfer transitions, we present theoretical studies using density-functional theory and time-dependent density-functional theory for the two pristine DPP based statistical monomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the photoresponse of a hydrogenated graphene (H-graphene)-based infrared (IR) photodetector that is 4 times higher than that of pristine graphene. An enhanced photoresponse in H-graphene is attributed to the longer photoinduced carrier lifetime and hence a higher internal quantum efficiency of the device. Moreover, a variation in the angle of incidence of IR radiation demonstrated a nonlinear photoresponse of the detector, which can be attributed to the photon drag effect. However, a linear dependence of the photoresponse is revealed with different incident powers for a given angle of IR incidence. This study presents H-graphene as a tunable photodetector for advanced photoelectronic devices with higher responsivity. In addition, in situ tunability of the graphene bandgap enables achieving a cost-effective technique for developing photodetectors without involving any external treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion-dissolution at extreme pH conditions, together with the formation of inert Zn(OH)(2) during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power conversion efficiency of a solar cell is a complex parameter which usually hides the molecular details of the charge generation process. For rationally tailoring the overall device efficiency of the dye-sensitized solar cell, detailed molecular understanding of photoinduced reactions at the dye-TiO2 interface has to be achieved. Recently, near-IR absorbing diketopyrrolopyrrole-based (DPP) low bandgap polymeric dyes with enhanced photostabilities have been used for TiO2 sensitization with moderate efficiencies. To improve the reported device performances, a critical analysis of the polymerTiO(2) interaction and electron transfer dynamics is imperative. Employing a combination of time-resolved optical measurements complemented by low temperature EPR and steady-state Raman spectroscopy on polymerTiO(2) conjugates, we provide direct evidence for photoinduced electron injection from the TDPP-BBT polymer singlet state into TiO2 through the C-O group of the DPP-core. A detailed excited state description of the electron transfer process in films reveals instrument response function (IRF) limited (<110 fs) charge injection from a minor polymer fraction followed by a picosecond recombination. The major fraction of photoexcited polymers, however, does not show injection indicating pronounced ground state heterogeneity induced due to nonspecific polymerTiO(2) interactions. Our work therefore underscores the importance of gathering molecular-level insight into the competitive pathways of ultrafast charge generation along with probing the chemical heterogeneity at the nanoscale within the polymerTiO2 films for optimizing photovoltaic device efficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at similar to 13.35% strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at similar to 3% strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering of electronic energy band structure in graphene based nanostructures has several potential applications. Substrate induced bandgap opening in graphene results several optoelectronic properties due to the inter-band transitions. Various defects like structures, including Stone-Walls and higher-order defects are observed when a graphene sheet is exfoliated from graphite and in many other growth conditions. Existence of defect in graphene based nanostructures may cause changes in optoelectronic properties. Defect engineered graphene on silicon system are considered in this paper to study the tunability of optoelectronic properties. Graphene on silicon atomic system is equilibrated using molecular dynamics simulation scheme. Based on this study, we confirm the existence of a stable super-lattice. Density functional calculations are employed to determine the energy band structure for the super-lattice. Increase in the optical energy bandgap is observed with increasing of order of the complexity in the defect structure. Optical conductivity is computed as a function of incident electromagnetic energy which is also increasing with increase in the defect order. Tunability in optoelectronic properties will be useful in understanding graphene based design of photodetectors, photodiodes and tunnelling transistors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a lot of interest has been centred on the optical properties of hexagonal boron nitride (h-BN), which has a similar lattice structure to graphene. Interestingly, h-BN has a wide bandgap and is biocompatible, so it has potential applications in multiphoton bioimaging, if it can exhibit large nonlinear optical (NLO) properties. However, extensive investigation into the NLO properties of h-BN have not been done so far. Here, NLO properties of 2D h-BN nanosheets (BNNS) are reported for the first time, using 1064-nm NIR laser radiation with a pulse duration of 10 ns using the Z-scan technique. The reverse saturable absorption occurs in aqueous colloidal solutions of BNNS with a very large two-photon absorption cross section (sigma(2PA)) of approximate to 57 x 10(-46) cm(4) s(-1) photon(-1). Also, by using UV-Vis absorption spectroscopy, the temperature coefficient of the bandgap (dE(g)/dT) of BNNS is determined to be 5.9 meV K-1. Further defect-induced photoluminescence emission in the UV region is obtained in the 283-303 K temperature range, under excitations of different wavelengths. The present report of large sigma(2PA) combined with stability and biocompatibility could open up new possibilities for the application of BNNS as a potential optical material for multiphoton bioimaging and advanced photonic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n-n isotype heterojunction of InGaN and bare Si (111) was formed by plasma assisted molecular beam epitaxy without nitridation steps or buffer layers. High resolution X-ray diffraction studies were carried out to confirm the formation of epilayers on Si (111). X-ray rocking curves revealed the presence of large number of edge threading dislocations at the interface. Room temperature photoluminescence studies were carried out to confirm the bandgap and the presence of defects. Temperature dependent I-V measurements of Al/InGaN/Si (111)/Al taken in dark confirm the rectifying nature of the device. I-V characteristics under UV illumination, showed modest rectification and was operated at zero bias making it a self-powered device. A band diagram of the heterojunction is proposed to understand the transport mechanism for self-powered functioning of the device. (c) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the D-5(0) -> F-7(2) transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Omega(t) (t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.