276 resultados para avalanche noise theory
Resumo:
It is well known that space-time block codes (STBCs) obtained from orthogonal designs (ODs) are single-symbol decodable (SSD) and from quasi-orthogonal designs (QODs) are double-symbol decodable (DSD). However, there are SSD codes that are not obtainable from ODs and DSD codes that are not obtainable from QODs. In this paper, a method of constructing g-symbol decodable (g-SD) STBCs using representations of Clifford algebras are presented which when specialized to g = 1, 2 gives SSD and DSD codes, respectively. For the number of transmit antennas 2(a) the rate (in complex symbols per channel use) of the g-SD codes presented in this paper is a+1-g/2(a-9). The maximum rate of the DSD STBCs from QODs reported in the literature is a/2(a-1) which is smaller than the rate a-1/2(a-2) of the DSD codes of this paper, for 2(a) transmit antennas. In particular, the reported DSD codes for 8 and 16 transmit antennas offer rates 1 and 3/4, respectively, whereas the known STBCs from QODs offer only 3/4 and 1/2, respectively. The construction of this paper is applicable for any number of transmit antennas. The diversity sum and diversity product of the new DSD codes are studied. It is shown that the diversity sum is larger than that of all known QODs and hence the new codes perform better than the comparable QODs at low signal-to-noise ratios (SNRs) for identical spectral efficiency. Simulation results for DSD codes at variousspectral efficiencies are provided.
Resumo:
Non-stationary signal modeling is a well addressed problem in the literature. Many methods have been proposed to model non-stationary signals such as time varying linear prediction and AM-FM modeling, the later being more popular. Estimation techniques to determine the AM-FM components of narrow-band signal, such as Hilbert transform, DESA1, DESA2, auditory processing approach, ZC approach, etc., are prevalent but their robustness to noise is not clearly addressed in the literature. This is critical for most practical applications, such as in communications. We explore the robustness of different AM-FM estimators in the presence of white Gaussian noise. Also, we have proposed three new methods for IF estimation based on non-uniform samples of the signal and multi-resolution analysis. Experimental results show that ZC based methods give better results than the popular methods such as DESA in clean condition as well as noisy condition.
Resumo:
By modifying the electrodeposition technique, we have stabilized the silver nanowires (AgNWs) in high-energy hexagonal closed packed (hcp)structure. The conductivity noise measurements show that the noise magnitude in hcp silver nanowires is several orders of magnitude smaller than that of face centered cubic (fcc) silver nanowires, which is obtained by standard over potential lectrodeposition (OPD)technique. The reduction of noise can be attributed to the restricted dislocation dynamics in hcp AgNWs due to the presence of less number of slip systems. Temperature dependent noise measurements show that the noise magnitude in hcp AgNWs is weakly temperature dependent while in fcc AgNWs it is strong function of temperature.
Resumo:
We present a low-frequency electrical noise measurement in graphene based field effect transistors. For single layer graphene (SLG), the resistance fluctuations is governed by the screening of the charge impurities by the mobile charges. However, in case of Bilayer graphene (BLG), the electrical noise is strongly connected to its band structure, and unlike single layer graphene, displays a minimum when the gap between the conduction and valence band is zero. Using double gated BLG devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
The phenomenon of drop formation at conical tips under near zero flow conditions has been investigated using a theoretical approach. The analysis permits the prediction of drop profile and drop volume, until the onset of instability. A semiempirical approach based on the similarity of drop shapes has been adopted to predict the detaching drop volumes at conical tips. The effects of base diameter of the cone, cone angle, interfacial tension, and the densities of the drop and the surrounding fluid on the maximum and detached drop volumes are predicted.
Resumo:
Coalescence between two droplets in a turbulent liquid-liquid dispersion is generally viewed as a consequence of forces exerted on the drop-pair squeezing out the intervening continuous phase to a critical thickness. A new synthesis is proposed herein which models the film drainage as a stochastic process driven by a suitably idealized random process for the fluctuating force. While the true test of the model lies in detailed parameter estimations with measurement of drop-size distributions in coalescing dispersions, experimental measurements on average coalescence frequencies lend preliminary support to the model.
Resumo:
After briefly discussing the question of a distinct mixed valent state and theoretical models for it, the area of greatest theoretical success, namely the mixed valent impurity, is reviewed. Applications to spectroscopy, energetics and Hall effect are then putlined. The independent impurity approximation is inadequate for many properties of the bulk system, which depend on lattice coherence. A recent auxiliary or slave boson approach with a simple mean field limit and fluctuation corrections is summarized. Finally the mixed valent semiconductor is discussed as an outstanding problem.
Resumo:
We discuss the consistency, unitarity and Lorentz invariance of an anomalous U(1) gauge theory in four dimensions. Our analysis is based on an effective low-energy action valid in the chiral symmetry broken phase. The allegedly bad properties of anomalous theories (except non-renormalizability) are examined. It is shown that, in the low-energy context, the theory can be consistently and unitarily quantised, and is formally Lorentz covariant.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
A perturbative scaling theory for calculating static thermodynamic properties of arbitrary local impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The basic features are developments of the ideas of Anderson and Wilson, but the precise formulation is new and is capable of taking into account band-edge effects which cannot be neglected in certain problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are derived up to third order. The strategy of using such perturbative scaling equations is delineated and the renormalization-group aspects are discussed. The method is illustrated by applying it to the single-impurity Kondo problem whose static properties are well understood.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. For the probability distribution of the transfer matrix R of the conductor we propose a distribution of maximum information entropy, constrained by the following physical requirements: (1) flux conservation, (2) time-reversal invariance, and (3) scaling with the length of the conductor of the two lowest cumulants of ω, where R=exp(iω→⋅Jbhat). The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.