280 resultados para agronomic characteristics
Resumo:
An experimental study is presented to show the effect of the cowl location and shape on the shock interaction phenomena in the inlet region for a 2D, planar scramjet inlet model. Investigations include schlieren visualization around the cowl region and heat transfer rate measurement inside the inlet chamber.Both regular and Mach reflections are observed when the forebody ramp shock reflects from the cowl plate. Mach stem heights of 3.3 mm and 4.1 mm are measured in 18.5 mm and 22.7 mm high inlet chambers respecively. Increased heat transfer rate is measured at the same location of chamber for cowls of longer lenghs is indicating additional mass flow recovery by the inlet.
Resumo:
Isolated nuclei from differentiating cultures of Nicotiana sanderae showed increased levels of RNA polymerase activity as compared to the nuclei from callus cultures. The RNA synthetic activity was dependent on nucleotide triphosphates and Mg2+ and was destroyed by RNase. Maximum activity was obtained in the presence of 50 mM (NH4)2 SO4 and α-amanitin inhibited 40% and 55% of the activity in the nuclei from callus and differentiating tissue respectively. The nuclei from differentiating tissue elicited a 3-fold increase in RNA polymerase I and a 4-fold augmentation in RNA polymerase II activities.
Resumo:
The phase transition in gamma-irradiated triglycine sulphate (TGS) has been investigated by using a method based on the measurement of thermal noise. The results of a study of the polarization switching characteristics of gamma irradiated TGS and sodium nitrite (NaNO2) have also been presented. The effect of irradiation on the phase transition and the switching processes has been discussed.
Resumo:
The propagation characteristics of a visco-elastic fluid in a distensible tube tube are studied. The linear visco-elastic nature of the fluid is described by a complex coefficient of viscosity η*. The equation of motion of the vessel wall takes into account the pulsatile nature of the wall. Results are presented for wave propagation velocity, the resistance and the reactance of the fluid and the wall impedance. It is seen that the visco-elastic influence is significant for high values of the frequency of oscillation in various arterial vessels.
Resumo:
Firing delays of a simple triggered vacuum gap are reported in this paper. The effects of insulating materials in the auxiliary gap, auxiliary gap current, main gap current and electrode separation on the delay have been investigated. The presence of insulating material in the auxiliary gap having low auxiliary gap resistance appears to exhibit large delay. Delay decreases considerably with increase of current in the auxiliary and the main gaps, but it increases with increase of electrode separation. The scatter in the delay is less than 25 ps and 500 ps with supramica (Mycalex Corporation of America) and silicon carbide respectively at lower values of auxiliary gap current and it becomes negligible for supramica at auxiliary gap currents greater than 6A. This investigation appears to indicate that the simple device can be used as a fast switch.
Resumo:
A theorem termed the Geometrical Continuity Theorem is enunciated and proven. This theorem throws light on the aspects of the continuity of the proportional portion with the base weir portion. These two portions constitute the profile of a proportional weir. A weir of this type with circular bottom is designed. The theorem is used to establish the continuity at the junction of the proportional and the base weir portions of this weir. The coordinates of the weir profile are obtained by numerical methods and are furnished in tabular form for ready use by designers. The discharge passing through the weir is a linear function of the head. The verification of the assumed linear discharge-head relation is furnished for one of the three weirs with which experiments were conducted. The coefficient of discharge for this typical weir is found to be a constant with a value of 0.59.
Resumo:
The paper deals with an exact analysis of standing waves in an impedance tube with mean flow. A method is offered for the experimental evaluation of the various wave parameters. Navier–Stokes equations have been solved for evaluating the volume velocity taking into account mean flow, viscosity, etc. The engine exhaust system has been characterized as an acoustic source with an acoustic pressure and internal impedance. A method is suggested for the evaluation of these hypothetical parameters using the exhaust pipe as an impedance tube.Subject Classification: [43]85.20; [43]20.40.
Resumo:
Practical applications of vacuum as an insulator necessitated determining the low-pressure breakdown characteristics of long gap lengths of a point-plane electrode system. The breakdown voltage has been found to vary as the square root of the gap length. Further, with the point electrode as the anode, the values of the breakdown voltages obtained have been found to be larger than those obtained with a plane-parallel electrode system at a corresponding gap length. By applying the theory of the anode heating mechanism as the cause for breakdown, the results have been justified, and by utilizing a field efficiency factor which is the ratio of the average to maximum field, an empirical criterion has been developed. This criterion helps in calculating the breakdown voltage of a nonuniform gap system by the knowledge of the breakdown voltage of a plane-parallel electrode system.
Resumo:
The role of thermal decomposition of the binder and the oxidiser in the thermal decomposition, ageing and combustion of composite solid-propellants has been investigated. The present study shows that the burning rate and ageing of polystyrene and ammonium perchlorate propellant are related to the thermal decomposition of the propellant itself and ammonium perchlorate.
Resumo:
The departures of the operational amplifiers (OA's) from the ideal performance and their effect on VCV's in the inverting and noninverting mode are discussed. It is found that for the same ideal gain, the bandwidths for the inverting and noninverting modes are different, the former being less. Complete equivalent circuits describing the frequency dependance of the input and output impedances for both modes are given. In particular, the output impedance is shown to be inductive for the frequencies of interest, and this is also confirmed by experimental results.
Resumo:
Low-voltage and high-current switching delay characteristics of a simple triggered vacuum gap (TVG) are described using lead zirconate titanate as the dielectric material in the auxiliary gap. This TVG has superior performance at high currents (up to 14 kA was studied) with regard to delay, reliable firing and extended life as compared to the one using either supramica or silicon carbide. The total delay consists of three intervals: to break down the auxiliary gap, to propagate the trigger plasma and to break down the main gap. The data on the influence of the various parameters like the trigger voltage, current, energy and the main circuit energy are given. It has been found that the delay due to the first two intervals is small compared to the third.
Resumo:
The problem of excitation of 11zultilayercd-graded-dielectric-coatedc onductor by a magnetic ring source is fornzulated in the ,form of a contour integrul which is rolved by using the method of steepest descent. Numerical evaluation of launching efiiency shows that high value of about 90 percent can be attained by choosing proper dimensions of the launcher with respect to the dimension of the surface wave line.
Resumo:
A modal analysis and near-field study for a dielectric-coated conducting sphere excited by a delta function electric field source has been made. The structure can support an infinite number of modes theoretically. For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both even and odd order modes are excited. The variation of the amplitude coefficients both internal and external exhibit a different nature of variation with respect to the various structure parameters for different modes. The field distributions both in the r and theta directions for non-equatorial excitation show good agreement between theory and experiment for the strongest mode.
Resumo:
Sensing characteristics of few-layer graphenes for NO2 and humidity have been investigated with graphene samples prepared by the thermal exfoliation of graphitic oxide, conversion of nanodiamond (DG) and arc-discharge of graphite in hydrogen (HG). The sensitivity for NO2 is found to be highest with DG. Nitrogen-doped HG (n-type) shows increased sensitivity for NO2 compared with pure HG. The highest sensitivity for humidity is observed with HG. Sensing characteristics of graphene have been examined for different aliphatic alcohols and the sensitivity is found to vary with the chain length and branching.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO-3TiO(2)-B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz-1 MHz frequency range were measured as a function of temperature (323-748 K). The dielectric constant and loss were found to be frequency independent in the 323-473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga's formula and found to be 16 ppm K-1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17 +/- 0.5 and 0.005 +/- 0.001, respectively at 323 K in the 1 kHz-1 MHz frequency range which may be of considerable interest to capacitor industry.