36 resultados para Whether magnetoresistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engineered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchable tunnel barrier that controls the magnetoresistance of the system, instead of the magnetic properties of the magnetic grain material, Fe3O4, and thus establishing the feasibility of engineered SVMR structures. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly monodisperse spherical magnetite (Fe3O4) nanoparticles are prepared by colloidal chemistry route. Magnetic and electronic transport properties of the annealed pellets of these nanoparticles are reported. Effect of external magnetic and electric fields on the magnetic and transport properties of the material are studied as a function of temperature. We find that the highest resistance state of the ferromagnetic system occurs at a magnetic field which is approximately equal to its magnetic coercivity; this establishes the magnetoresistance (MR) in this system to be of the conventional tunnelling type MR as against the spin-valve type MR found more recently in some ferromagnetic oxide systems. The material also shows electroresistance (ER) property with its low-temperature resistance being strongly dependent on the excitation current that is used for the measurement. This ER effect is concluded to be intrinsic to the material and is attributed to the electric field-induced melting of the charge-order state in magnetite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the experimental results of temperature dependent magnetoresistance (MR) and the magnetization studies of iron encapsulated multiwall carbon nanotube (MWCNT)/polyvinyl chloride (PVC) composites with different wt% of MWCNTs. Transmission electron microscopy characterization shows that MWCNTs are encapsulated with rod-shaped iron nanoparticles of aspect ratio of similar to 3. The MR behavior of 1.9 wt% MWCNT/PVC sample shows dominance of forward scattering and wave function shrinkage whereas, weak localization and electron-electron interactions explain the MR data of higher wt% samples (9.1, 16.6 and 44.4 wt%). The composites of 4.7 and 9.1 wt% exhibit ferromagnetic behavior at all temperatures with room temperature coercivities of similar to 1036 and 628 Oe, respectively. (C) 2014 Elsevier Ltd. All rights reserved.