33 resultados para West Point Region (N.Y.)--Remote-sensing maps.
Resumo:
The impact of heating by black carbon aerosols on Indian summer monsoon has remained inconclusive. Some investigators have predicted that black carbon aerosols reduce monsoon rainfall while others have argued that it will increase monsoon rainfall. These conclusions have been based on local influence of aerosols on the radiative fluxes. The impact of aerosol-like heating in one region on the rainfall in a remote region has not been examined in detail. Here, using an atmospheric general circulation model, it has been shown that remote influence of aerosol-like heating can be as important as local influence on Indian summer monsoon. Precipitation in northern Arabian Sea and north-west Indian region increased by 16% in June to July when aerosol-like heating were present globally. The corresponding increase in precipitation due to presence of aerosol-like heating only over South Asia (local impact) and East Asia (remote impact) were 28 and 13%, respectively. This enhancement in precipitation was due to destabilization of the atmosphere in pre-monsoon season that affected subsequent convection. Moreover, pre-monsoon heating of the lower troposphere changed the circulation substantially that enabled influx of more moisture over certain regions and reduced the moist static stability of the atmosphere. It has been shown that regional aerosol heating can have large impact on the phase of upper tropospheric Rossby wave in pre-monsoon season, which acts as a primary mechanism behind teleconnection and leads to the change in precipitation during monsoon season. These results demonstrate that changes in aerosol in one region can influence the precipitation in a remote region through changes in circulation.
Resumo:
The current study presents an algorithm to retrieve surface Soil Moisture (SM) from multi-temporal Synthetic Aperture Radar (SAR) data. The developed algorithm is based on the Cumulative Density Function (CDF) transformation of multi-temporal RADARSAT-2 backscatter coefficient (BC) to obtain relative SM values, and then converts relative SM values into absolute SM values using soil information. The algorithm is tested in a semi-arid tropical region in South India using 30 satellite images of RADARSAT-2, SMOS L2 SM products, and 1262 SM field measurements in 50 plots spanning over 4 years. The validation with the field data showed the ability of the developed algorithm to retrieve SM with RMSE ranging from 0.02 to 0.06 m(3)/m(3) for the majority of plots. Comparison with the SMOS SM showed a good temporal behaviour with RMSE of approximately 0.05 m(3)/m(3) and a correlation coefficient of approximately 0.9. The developed model is compared and found to be better than the change detection and delta index model. The approach does not require calibration of any parameter to obtain relative SM and hence can easily be extended to any region having time series of SAR data available.
Resumo:
Anthropogenic aerosols play a crucial role in our environment, climate, and health. Assessment of spatial and temporal variation in anthropogenic aerosols is essential to determine their impact. Aerosols are of natural and anthropogenic origin and together constitute a composite aerosol system. Information about either component needs elimination of the other from the composite aerosol system. In the present work we estimated the anthropogenic aerosol fraction (AF) over the Indian region following two different approaches and inter-compared the estimates. We espouse multi-satellite data analysis and model simulations (using the CHIMERE Chemical transport model) to derive natural aerosol distribution, which was subsequently used to estimate AF over the Indian subcontinent. These two approaches are significantly different from each other. Natural aerosol satellite-derived information was extracted in terms of optical depth while model simulations yielded mass concentration. Anthropogenic aerosol fraction distribution was studied over two periods in 2008: premonsoon (March-May) and winter (November-February) in regard to the known distinct seasonality in aerosol loading and type over the Indian region. Although both techniques have derived the same property, considerable differences were noted in temporal and spatial distribution. Satellite retrieval of AF showed maximum values during the pre-monsoon and summer months while lowest values were observed in winter. On the other hand, model simulations showed the highest concentration of AF in winter and the lowest during pre-monsoon and summer months. Both techniques provided an annual average AF of comparable magnitude (similar to 0.43 +/- 0.06 from the satellite and similar to 0.48 +/- 0.19 from the model). For winter months the model-estimated AF was similar to 0.62 +/- 0.09, significantly higher than that (0.39 +/- 0.05) estimated from the satellite, while during pre-monsoon months satellite-estimated AF was similar to 0.46 +/- 0.06 and the model simulation estimation similar to 0.53 +/- 0.14. Preliminary results from this work indicate that model-simulated results are nearer to the actual variation as compared to satellite estimation in view of general seasonal variation in aerosol concentrations.