336 resultados para WATER BLOOMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of the orientational dynamics of water molecules confined inside narrow carbon nanorings reveal that reorientational relaxation is mediated by large amplitude angular jumps. The distribution of waiting time between jumps peaks at about 60 fs, and has a slowly decaying exponential tail with a timescale of about 440 fs. These time scales are much faster than the mean waiting time between jumps of the water molecules in bulk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea water electrolysis is one of the promising ways to produce hydrogen since it is available in plentiful supply on the earth. However, in sea water electrolysis toxic chlorine evolution is the preferred reaction over oxygen evolution at the anode. In this work, research has been focused on the development of electrode materials with a high selectivity for oxygen evolution over chlorine evolution. Selective oxidation in sea water electrolysis has been demonstrated by using a cation-selective polymer. We have used a perm-selective membrane (Nafion®), which electrostatically repels chloride ions (Cl−) to the electrode surface and thereby enhances oxygen evolution at the anode. The efficiency and behaviour of the electrode have been characterized by means of anode current efficiency and polarization studies. The surface morphology of the electrode has been characterized by using a scanning electron microscope (SEM). The results suggest that nearly 100% oxygen evolution efficiency could be achieved when using an IrO2/Ti electrode surface-modified by a perm-selective polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana) leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of chemical specificity of hydrophilic surfaces on the structure of confined water in the subnanometer regime is investigated using grand canonical Monte Carlo Simulations. The structural variations for water confined between hydroxylated silica surfaces are contrasted with water confined between mica surfaces. Although both surfaces are hydrophilic, our Study shows that hydration of potassium ions on the mica surface has a strong influence on the water Structure and solvation force response of confined water. In contrast to the disrupted hydrogen bond network observed for water confined between Mica Surfaces, water between silica surfaces retains its hydrogen bond network displaying bulklike structural features down to surface separations as small as 0.45 nm. Hydrogen bonding of all invariant contact water layer with the surface silanol groups aids in maintaining a constant number of hydrogen bonds per water molecule for the silica surfaces. As a consequence water depletion and rearrangement upon decreasing confinement is a strong function of the hydrophilic surface specificity, particularly at smaller separations. An oscillatory solvation force response is only observed for water confined between Silica surfaces, and bulklike features are observed for both Surfaces above a surface separation of about 1.2 nm. We evaluate and contrast the water density, dipole moment distributions, pi pair correlation functions, and solvation forces as a function of the surface separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass transition and relaxation of the glycerol-water (G-W) binary mixture system have been studied over the glycerol concentration range of 5-85 mol% by using the highly sensitive technique of electron spin resonance (ESR). For the water rich mixture the glass transition,sensed by the dissolved spin probe, arises from the vitrified mesoscopic portion of the binary system. The concentration dependence of the glass transition temperature manifests a closely related molecular level cooperativity in the system. A drastic change in the mesoscopic structure of the system at the critical concentration of 40 mol is confirmed by an estimation of the spin probe effective volume in a temperature range where the tracer reorientation is strongly coupled to the system dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce0.67Cr0.33O2.11 was synthesized by hydrothermal method using diethylenetriamine as complexing agent (Chem. Mater. 2008, 20, 7268). Ce0.67Cr0.33O2.11 being the only compound likes UO2+delta to have excess oxygen, it releases a large proportion of its lattice oxygen (0.167 M [O]/mole of compound) at relatively low temperature (465 degrees C) directly and it has been utilized for generation of H-2 by thermo-splitting of water. An almost stoichiometric amount of H-2 (0.152 M/Mole of compound) is generated at much lower temperature (65 degrees C). There is an almost comparable amount of oxygen release and hydrogen generation over this material at very low temperature comparedto other CeO2-MOx (Mn, Fe, Cu, and Ni) mixed-oxide solid solutions (O-2 evolution >= 1300 degrees C and H-2 generation at 1000 degrees C). The reversible nature of oxygen release and intake of this material is attributed to its fluorite Structure and coupling between the Ce4+/Ce3+ and Cr4+/6+/Cr3+ redox couples. Compound shows reversible oxygen release and intake by H2O absorption and subsequent hydrogen release to gain parent structure and hence this material can be utilized for generation of H-2 at very low temperature by thermo-chemical splitting of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batch adsorption of fluoride onto manganese dioxide-coated activated alumina (MCAA) has been studied. Adsorption experiments were carried out at various pH (3–9), time interval (0–6 h), adsorbent dose (1–16 g/l), initial fluoride concentration (1–25 mg/l) and in the presence of different anions. Adsorption isotherms have been modeled using Freundlich, Langmuir and Dubinin–Raduskevich isotherms and adsorption followed Langmuir isotherm model. Kinetic studies revealed that the adsorption followed second-order rate kinetics. MCAA could remove fluoride effectively (up to 0.2 mg/l) at pH 7 in 3 h with 8 g/l adsorbent dose when 10 mg/l of fluoride was present in 50 ml of water. In the presence of other anions, the adsorption of fluoride was retared. The mechanism of fluoride uptake by MCAA is due to physical adsorption as well as through intraparticle diffusion which was confirmed by kinetics, Dubinin–Raduskevich isotherm, zeta-potential measurements and mapping studies of energy-dispersive analysis of X-ray.