46 resultados para Violation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sufficiently long lived warm dark matter could be a source of X-rays observed by satellite based X-ray telescopes. We consider axinos and gravitinos with masses between 1 keV and 100 keV in supersymmetric models with sin all R-parity violation. We show that axino dark matter receives significant constraints from X-ray observations of Chandra and SPI, especially for the lower end of the allowed range of the axino decay constant f(a), while the gravitino dark matter remains unconstrained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutralino dark matter in supersymmetric models is revisited in the presence of flavor violation in the soft supersymmetry breaking sector. We focus on flavor violation the sleptonic sector and study the implications for the co-annihilation regions. Flavor is introduced by a single (mu) over tilde (R) - (T) over tilde (R) insertion in the slepton mass matrix. Limits on insertion from BR(tau -> mu + gamma) are weak in some regions of the parameter space where happen within the amplitudes. We look for overlaps in parameter space where the co-annihilation condition as well as the cancellations within the amplitudes occur. mSUGRA, such overlap regions are not existent, whereas they are present in models non-universal Higgs boundary conditions (NUHM). The effect of flavor violation is fold: (a) it shifts the co-annihilation regions towards lighter neutralino masses (b) co-annihilation cross sections would be modified with the inclusion of flavor violating which can contribute significantly. Even if flavor violation is within the presently limits, this is sufficient to modify the thermally averaged cross-sections by about 15)% in mSUGRA and (20{30)% in NUHM, depending on the parameter space. In overlap regions, the flavor violating cross sections become comparable and in some even dominant to the flavor conserving ones. A comparative study of the channels is for mSUGRA and NUHM cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In minimal supergravity (mSUGRA) or CMSSM, one of the main co-annihilating partners of the neutralino is the lightest stau, (tau) over tilde (1). In the presence of flavour violation in the right-handed sector, the co-annihilating partner would be a flavour mixed state. The flavour effect is two-fold: (a) It changes the mass of (tau) over tilde (1) thus modifying the parameter space of the co-annihilation and (b) flavour violating scatterings could now contribute to the cross-sections in the early Universe. In fact, it is shown that for large enough delta similar to 0.2, these processes would constitute the dominant channels in co-annihilation regions. The amount of flavour mixing permissible is constrained by flavour violating tau -> mu or tau -> e processes. For Delta(RR) mass insertions, the constraints from flavour violation are not strong enough in some regions of the parameter space due to partial cancellations in the amplitudes. In mSUGRA, the regions with cancelations within LFV amplitudes do not overlap with the regions of co-annihilations. In non-universal Higgs model (NUHM), however, these regions do overlap leading to significant flavoured co-annihilations. At the LHC and other colliders, these regions can constitute for interesting signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the status of supersymmetric seesaw models in the light of recent experimental results on mu -> e + gamma, theta(13) and the light Higgs mass at the LHC. SO(10)-like relations are assumed for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan beta is still allowed. This remaining region can be ruled out by an order of magnitude improvement in the current limit on BR(mu -> e + gamma). We also explore a model with non-universal Higgs mass boundary conditions at the high scale. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations within the flavor violating terms. Such cancellations might relax the severe constraints imposed by lepton flavor violation compared to mSUGRA. Nevertheless for a large region of parameter space the predicted rates lie within the reach of future experiments once the light Higgs mass constraint is imposed. We also update the potential of the ongoing and future experimental searches for lepton flavor violation in constraining the supersymmetric parameter space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. SuSeFLAV is a numerical tool capable of computing supersymmetric spectra precisely for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete 3 x 3 flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as l(j) -> l(i)gamma, l(j) -> 3 l(i), b -> s gamma and supersymmetric contributions to flavor conserving quantities such as (g(mu) - 2). A large choice of executables suitable for various operations of the program are provided. Program summary Program title: SuSeFLAV Catalogue identifier: AEOD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 76552 No. of bytes in distributed program, including test data, etc.: 582787 Distribution format: tar.gz Programming language: Fortran 95. Computer: Personal Computer, Work-Station. Operating system: Linux, Unix. Classification: 11.6. Nature of problem: Determination of masses and mixing of supersymmetric particles within the context of MSSM with conserved R-parity with and without the presence of Type-I seesaw. Inter-generational mixing is considered while calculating the mass spectrum. Supersymmetry breaking parameters are taken as inputs at a high scale specified by the mechanism of supersymmetry breaking. RG equations including full inter-generational mixing are then used to evolve these parameters up to the electroweak breaking scale. The low energy supersymmetric spectrum is calculated at the scale where successful radiative electroweak symmetry breaking occurs. At weak scale standard model fermion masses, gauge couplings are determined including the supersymmetric radiative corrections. Once the spectrum is computed, the program proceeds to various lepton flavor violating observables (e.g., BR(mu -> e gamma), BR(tau -> mu gamma) etc.) at the weak scale. Solution method: Two loop RGEs with full 3 x 3 flavor mixing for all supersymmetry breaking parameters are used to compute the low energy supersymmetric mass spectrum. An adaptive step size Runge-Kutta method is used to solve the RGEs numerically between the high scale and the electroweak breaking scale. Iterative procedure is employed to get the consistent radiative electroweak symmetry breaking condition. The masses of the supersymmetric particles are computed at 1-loop order. The third generation SM particles and the gauge couplings are evaluated at the 1-loop order including supersymmetric corrections. A further iteration of the full program is employed such that the SM masses and couplings are consistent with the supersymmetric particle spectrum. Additional comments: Several executables are presented for the user. Running time: 0.2 s on a Intel(R) Core(TM) i5 CPU 650 with 3.20 GHz. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sequence of moments obtained from statistical trials encodes a classical probability distribution. However, it is well known that an incompatible set of moments arises in the quantum scenario, when correlation outcomes associated with measurements on spatially separated entangled states are considered. This feature, viz., the incompatibility of moments with a joint probability distribution, is reflected in the violation of Bell inequalities. Here, we focus on sequential measurements on a single quantum system and investigate if moments and joint probabilities are compatible with each other. By considering sequential measurement of a dichotomic dynamical observable at three different time intervals, we explicitly demonstrate that the moments and the probabilities are inconsistent with each other. Experimental results using a nuclear magnetic resonance system are reported here to corroborate these theoretical observations, viz., the incompatibility of the three-time joint probabilities with those extracted from the moment sequence when sequential measurements on a single-qubit system are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Randall-Sundrum (RS) setup to be a theory of flavor, as an alternative to Froggatt-Nielsen models instead of as a solution to the hierarchy problem. The RS framework is modified by taking the low-energy brane to be at the grand unified theory (GUT) scale. This also alleviates constraints from flavor physics. Fermion masses and mixing angles are fit at the GUT scale. The ranges of the bulk mass parameters are determined using a chi(2) fit taking into consideration the variation in O(1) parameters. In the hadronic sector, the heavy top quark requires large bulk mass parameters localizing the right-handed top quark close to the IR brane. Two cases of neutrino masses are considered: (a) Planck scale lepton number violation and (b) Dirac neutrino masses. Contrary to the case of weak scale RS models, both these cases give reasonable fits to the data, with the Planck scale lepton number violation fitting slightly better compared to the Dirac case. In the supersymmetric version, the fits are not significantly different except for the variation in tan beta. If the Higgs superfields and the supersymmetry breaking spurion are localized on the same brane, then the structure of the sfermion masses are determined by the profiles of the zero modes of the hypermultiplets in the bulk. Trilinear terms have the same structure as the Yukawa matrices. The resultant squark spectrum is around similar to 2-3 TeV required by the light Higgs mass to be around 125 GeV and to satisfy the flavor violating constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the issue of the top quark Yukawa coupling measurement in a model-independent and general case with the inclusion of CP violation in the coupling. Arguably the best process to study this coupling is the associated production of the Higgs boson along with a t (t) over bar pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement-assuming a Standard Model (SM)-like coupling is available in the context of the ILC-conclude that the coupling could be pinned down to about a 10% level with modest luminosity, our investigations show that the scenario could be different in the case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the coupling, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies of the ILC with center-of-mass energies of 500 GeV, 800 GeV, and 1000 GeV show that moderate CP mixing in the Higgs sector could change the sensitivity to about 20%, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. Detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of the SM, such as for a model-independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be exercised in the measurement of the Yukawa couplings and the conclusions drawn from it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Representatives of several Internet service providers (ISPs) have expressed their wish to see a substantial change in the pricing policies of the Internet. In particular, they would like to see content providers (CPs) pay for use of the network, given the large amount of resources they use. This would be in clear violation of the ``network neutrality'' principle that had characterized the development of the wireline Internet. Our first goal in this article is to propose and study possible ways of implementing such payments and of regulating their amount. We introduce a model that includes the users' behavior, the utilities of the ISP and of the CPs, and, the monetary flow that involves the content users, the ISP and CP, and, in pUrticular, the CP's revenues from advertisements. We consider various game models and study the resulting equilibria; they are all combinations of a noncooperative game (in which the ISPs and CPs determine how much they will charge the users) with a ``cooperative'' one on how the CP and the ISP share the payments. We include in our model a possible asymmetric weighting parameter (that varies between zero to one). We also study equilibria that arise when one of the CPs colludes with the TSP. We also study two dynamic game models as well as the convergence of prices to the equilibrium values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, using the Gauge/gravity duality techniques, we explore the hydrodynamic regime of a very special class of strongly coupled QFTs that come up with an emerging UV length scale in the presence of a negative hyperscaling violating exponent. The dual gravitational counterpart for these QFTs consists of scalar dressed black brane solutions of exactly integrable Einstein-scalar gravity model with Domain Wall (DW) asymptotics. In the first part of our analysis we compute the R-charge diffusion for the boundary theory and find that (unlike the case for the pure AdS (4) black branes) it scales quite non trivially with the temperature. In the second part of our analysis, we compute the eta/s ratio both in the non extremal as well as in the extremal limit of these special class of gauge theories and it turns out to be equal to 1/4 pi in both the cases. These results therefore suggest that the quantum critical systems in the presence of (negative) hyperscaling violation at UV, might fall under a separate universality class as compared to those conventional quantum critical systems with the usual AdS (4) duals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic limit we compute various charge transport properties for a class of strongly coupled non-relativistic CFTs corresponding to z=2 fixed point whose dual gravitational counter part could be realized as the consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic background scales differently with the temperature. This shows a possible violation of the universal bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography. (C) 2015 The Author. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near the wall and an interface similar to that between the liquid and its vapor is formed. This analogy suggests that the composition of the binary liquid near this interface should exhibit spatial modulation similar to that near a liquid-vapor interface even if the interactions of the wall with the two components of the liquid are the same. The Guggenheim adsorption relation quantifies the concentrations of two components of a binary mixture near a liquid-vapor interface and qualitatively states that the majority (minority) component enriches the interface for negative (positive) mixing energy if the surface tensions of the two components are not very different. From molecular dynamics simulations of binary mixtures with different compositions and interactions we find that the Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative mixing energy at all state points considered. For systems with positive mixing energy, this relation is found to be qualitatively valid at low densities, while it is violated at state points with high density where correlations in the liquid are strong. This observation is validated by a calculation of the density profiles of the two components of the mixture using density functional theory with the Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim relation are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate methods to explore the CP nature of the t (t) over barh coupling at the LHC, focusing on associated production of the Higgs boson with a t (t) over bar pair. We first discuss the constraints implied by low-energy observables and by the Higgs-rate information from available LHC data, emphasizing that they cannot provide conclusive evidence on the nature of this coupling. We then investigate kinematic observables that could probe the t (t) over barh coupling directly, in particular, quantities that can be constructed out of just laboratory-frame kinematics. We define one such observable by exploiting the fact that t (t) over bar spin correlations do also carry information about the CP nature of the t (t) over barh coupling. Finally, we introduce a CP-odd quantity and a related asymmetry, able to probe CP violation in the t (t) over barh coupling and likewise, constructed out of laboratory-frame momenta only.