117 resultados para VIBRONIC BAND INTENSITIES
Resumo:
This paper deals with the manifestations of conical intersections (CIs), unequivocal spectroscopic signatures of which are still elusive, in the resonance Raman intensities. In particular, the results of our calculations on the `two state-two vibrational mode' and the `two state-three vibrational mode' models are presented. The models comprise two excited states of different spatial symmetry, one bright and one dark, which are coupled by a nontotally symmetric mode while the energy gap between them is tuned by one/two totally symmetric modes. Time dependent theory for vibronically coupled states is employed for the calculation and analysis of Raman excitation profiles (REPs). The manifestation of intersections in REPs is studied by extensive modelm calculations and the results of two specific models are presented. Themfeasibility of using REPs to probe the role of CIs in polyatomic systems is ascertained by multimode calculations on two polyatomic systems viz., pyrazine and trans-azobenzene. The study also notes the importance of the pump excitation wavelength dependence in a femtosecond time-resolved experiment probing the intersection-induced nonadiabatic dynamics. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Infrared spectra of substituted benzoyl chlorides and benzoyl bromides have been studied. The extent of splitting of the carbonyl band in benzoyl chlorides varies with substitution. While benzoyl bromide shows the carbonyl band as a single peak, para-nitrobenzoyl bromide shows a doublet. The results are interpreted in terms of intramolecular vibration effects (Fermi resonance). The intense band in the 860–880 cm−1 region in benzoyl chloride and benzoyl bromide has been assigned to the Ph-C stretching vibration.
Resumo:
The hardening cubic spring oscillator is studied under narrow-band gaussian excitation. Equivalent linearization leads to multiple steady states. The realizability of the solution is discussed through stochastic stability analysis. Theoretical results are supported by numerical simulation.
Resumo:
A modified linear prediction (MLP) method is proposed in which the reference sensor is optimally located on the extended line of the array. The criterion of optimality is the minimization of the prediction error power, where the prediction error is defined as the difference between the reference sensor and the weighted array outputs. It is shown that the L2-norm of the least-squares array weights attains a minimum value for the optimum spacing of the reference sensor, subject to some soft constraint on signal-to-noise ratio (SNR). How this minimum norm property can be used for finding the optimum spacing of the reference sensor is described. The performance of the MLP method is studied and compared with that of the linear prediction (LP) method using resolution, detection bias, and variance as the performance measures. The study reveals that the MLP method performs much better than the LP technique.
Resumo:
In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.
Resumo:
Considering the method of broad-band coupling a series resonant RLC load to a resistive source using a uniform quarter-wave transmission-line inverter, it is shown that the 3-dB bandwidth of the network insertion loss reckoned with respect to a 0-dB loss attains a maximum for a particular value of the center frequency insertion loss in the range 0-3 dB. The center frequency Ioss and the corresponding value of the maximum 3-dB bandwidth are calculated for various loads and the results graphically presented.
Resumo:
An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.
Resumo:
A report of the design, development ana periom~ance characteristics of a Q-band (8 nim) confoal. mned, aielectric lens beam waveguide is presented.
Resumo:
Consideration is given to a 25-foot long Q-band (8 mm) confocal, zoned dielectric lens beam waveguide. Numerical expressions for the axial and radial fields are presented. The experimental set-up consisted of uniformly spaced zoned dielectric lenses, a transmitting horn and a receiving horn. It was found that: (1) the wave beam is reiterated when confocal, zoned dielectric lenses act as phase transformers in place of smooth surfaced transformers in beam waveguides; (2) the axial field is oscillatory near the source and the oscillation persists for about 25 cm from the source; (3) the oscillation disappears after one lens is used; (4) higher order modes with higher attenuation rates die out faster than fundamental modes; (5) phase transformers do not alter beam modes; (6) without any lens the beam cross-section broadens significantly in the Z-direction; (7) with one lens the beam exhibits the reiteration phenomenon; and (8) inserting a second lens on the axial and cross-sectional field distribution shows further the reiteration principle.
Resumo:
The evolution with increasing Coulomb correlations of a semiconductor to a magnetic insulator is related to an excited-state crossover in pi-electron models for conjugated polymers. We associate strong fluorescence with a lowest singlet excitation S1 that is dipole allowed, on the band side, while S1 becomes two-photon allowed on the correlated side. S1/S2 crossovers in Hubbard, Pariser-Parr-Pople, or other chains with electron-hole symmetry and alternating transfer integral t(1 +/- delta) are based on exact results at delta=0 and 1, on molecular exciton theory at large delta, and on oligomer calculations up to twelve sites.
Resumo:
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.
Resumo:
Normal mode sound propagation in an isovelocity ocean with random narrow-band surface waves is considered, assuming the root-mean-square wave height to be small compared to the acoustic wavelength. Nonresonant interaction among the normal modes is studied straightforward perturbation technique. The more interesting case of resonant interaction is investigated using the method of multiple scales to obtain a pair of stochastic coupled amplitude equations which are solved using the Peano-Baker expansion technique. Equations for the spatial evolution of the first and second moments of the mode amplitudes are also derived and solved. It is shown that, irrespective of the initial conditions, the mean values of the mode amplitudes tend to zero asymptotically with increasing range, the mean-square amplitudes tend towards a state of equipartition of energy, and the total energy of the modes is conserved.
Resumo:
A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.
Resumo:
Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.