32 resultados para Unitary limits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the domain E in defined by This is called the tetrablock. This paper constructs explicit boundary normal dilation for a triple (A, B, P) of commuting bounded operators which has as a spectral set. We show that the dilation is minimal and unique under a certain natural condition. As is well-known, uniqueness of minimal dilation usually does not hold good in several variables, e.g., Ando's dilation is known to be not unique, see Li and Timotin (J Funct Anal 154:1-16, 1998). However, in the case of the tetrablock, the third component of the dilation can be chosen in such a way as to ensure uniqueness.