149 resultados para Unicellular organisms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro transcription analysis is important to understand the mechanism of transcription. Various assays for the analysis of initiation, elongation and termination form the basis for better understanding of the process. Purified RNA polymerase (RNAP) with high specific activity is necessary to carry out variety of these specific reactions. The RNAP purified from Mycobacterium smegmatis from exponential phase showed low promoter specificity in promoter-polymerase interaction studies. This is due to the presence of a large number of sigma factors during exponential phase and under-representation of sigma(A) required for house-keeping transcription. We describe an in vivo reconstitution of RNAP holoenzyme with sigma(A) and its purification, which resulted in holoenzyme with stoichiometric sigma(A) content. The reconstituted holoenzyme showed enhanced promoter-specific binding and promoter-specific-transcription activity compared to the enzyme isolated using standard procedure. Such in vivo reconstitution of stoichiometric holoenzyme could facilitate promoter-specific transcription assays, especially in organisms which encode a large number of sigma factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Along with useful microorganisms, there are some that cause potential damage to the animals and plants. Detection and identification of these harmful organisms in a cost and time effective way is a challenge for the researchers. The future of detection methods for microorganisms shall be guided by biosensor, which has already contributed enormously in sensing and detection technology. Here, we aim to review the use of various biosensors, developed by integrating the biological and physicochemical/mechanical properties (of tranducers), which can have enormous implication in healthcare, food, agriculture and biodefence. We have also highlighted the ways to improve the functioning of the biosensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of the evolution of species or organisms is essential for various biological applications. Evolution is typically studied at the molecular level by analyzing the mutations of DNA sequences of organisms. Techniques have been developed for building phylogenetic or evolutionary trees for a set of sequences. Though phylogenetic trees capture the overall evolutionary relationships among the sequences, they do not reveal fine-level details of the evolution. In this work, we attempt to resolve various fine-level sequence transformation details associated with a phylogenetic tree using cellular automata. In particular, our work tries to determine the cellular automata rules for neighbor-dependent mutations of segments of DNA sequences. We also determine the number of time steps needed for evolution of a progeny from an ancestor and the unknown segments of the intermediate sequences in the phylogenetic tree. Due to the existence of vast number of cellular automata rules, we have developed a grid system that performs parallel guided explorations of the rules on grid resources. We demonstrate our techniques by conducting experiments on a grid comprising machines in three countries and obtaining potentially useful statistics regarding evolutions in three HIV sequences. In particular, our work is able to verify the phenomenon of neighbor-dependent mutations and find that certain combinations of neighbor-dependent mutations, defined by a cellular automata rule, occur with greater than 90% probability. We also find the average number of time steps for mutations for some branches of phylogenetic tree over a large number of possible transformations with standard deviations less than 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acyl carrier protein is an integral component of many cellular metabolic processes. A number of studies have reported self-acylation behavior in acyl carrier proteins. Although AM exhibit high levels of similarity in their primary and tertiary structures, self-acylation behavior is restricted to only some ACPs that can be classified into two major families based on their function. The first family of ACPs is involved in polyketide biosynthesis, whereas the second family participates in fatty acid synthesis. Facilitated by the growing number of genome sequences available for analyses, large-scale phylogenetic studies were used in these studies to uncover as to how self-acylation behavior of acyl carrier proteins is linked with the evolution of metabolic pathways in organisms. These studies show that self-acylation behavior in acyl carrier proteins was lost during the course of evolution, with certain organisms and organelles viz. plastids, retaining it for specified functions. (C) 2009 IUBMB IUBMB Life, 61(8): 853-859, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the fuse of information on co-occurrence of domains in multi-domain proteins in predicting protein-protein interactions. The basic premise of our work is the assumption that domains co-occurring in a polypeptide chain undergo either structural or functional interactions among themselves. In this study we use a template dataset of domains in multidomain proteins and predict protein-protein interactions in a target organism. We note that maximum number of correct predictions of interacting protein domain families (158) is made in S. cerevisiae when the dataset of closely related organisms is used as the template followed by the more diverse dataset of bacterial proteins (48) and a dataset of randomly chosen proteins (23). We conclude that use of multi-domain information from organisms closely-related to the target can aid prediction of interacting protein families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules,naiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the genomic sequences of Escherichia coli and Salmonella typhimurium has revealed the presence of several homologues of the well studied citrate synthase (CS). One of these homologues has been shown to code for 2-methylcitrate synthase (2-MCS) activity. 2-MCS catalyzes one of the steps in the 2-methylcitric acid cycle found in these organisms for the degradation of propionate to pyruvate and succinate. In the present work, the gene coding for 2-MCS from S. typhimurium (StPrpC) was cloned in pRSET-C vector and overexpressed in E. coli. The protein was purified to homogeneity using Ni-NTA affinity chromatography. The purified protein was crystallized using the microbatch-under-oil method. The StPrpC crystals diffracted X-rays to 2.4 A resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 92.068, b = 118.159, c = 120.659 A, alpha = 60.84, beta = 67.77, gamma = 81.92 degrees. Computation of rotation functions using the X-ray diffraction data shows that the protein is likely to be a decamer of identical subunits, unlike CSs, which are dimers or hexamers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coenzyme A is an indispensable cofactor for all organisms and holds a central position in a number of pathways. Prokaryotic enzymes involved in the synthesis of CoA are quite different from their mammalian counterparts; hence, they are good targets for the development of antimicrobials to treat many diseases. There are antimicrobials that act by inhibiting CoA biosynthesis. It has been suggested that pantothenol exhibits antibacterial activity by competitively inhibiting pantothenate kinase, a key regulatory enzyme for CoA synthesis. Contrary to these suggestions, in this paper, we demonstrate that pantothenol acts as a substrate for Mycobacterium tuberculosis and Escherichia coli pantothenate kinases. The product, 4'-phosphopantothenol, thus formed inhibits competitively the utilization of 4'-phosphopantothenate by CoaBC. Thus, it is the failure of CoaBC to utilize 4'-phosphopantothenol as a substrate that accounts for the bactericidal activity of pantothenol. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now well established that the potent anti-microbial compound, triclosan, interrupts the type II fatty acid synthesis by inhibiting the enzyme enoyl-ACP reductase in a number of organisms. Existence of a high degree of similarity between the recently discovered enoyl-ACP reductase from R falciparum and B. napus enzyme permitted building of a satisfactory model for the former enzyme that explained some of the key aspects of the enzyme such as its specificity for binding to the cofactor and the inhibitor. We now report the interaction energies between triclosan and other hydroxydiphenyl ethers with the enzymes from B. napus, E. coli and R falciparum. Examination of the triclosan-enzyme interactions revealed that subtle differences exist in the ligand binding sites of the enzymes from different sources i.e., B. napus, E. coli and P falciparum. A comparison of their binding propensities thus determined should aid in the design of effective inhibitors for the respective enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenotypic flexibility, or the within-genotype, context-dependent, variation in behaviour expressed by single reproductively mature individuals during their lifetimes, often impart a selective advantage to organisms and profoundly influence their survival and reproduction. Another phenomenon apparently not under direct genetic control is behavioural inheritance whereby higher animals are able to acquire information from the behaviour of others by social learning, and, through their own modified behaviour, transmit such information between individuals and across generations. Behavioural information transfer of this nature thus represents another form of inheritance that operates in many animals in tandem with the more basic genetic system. This paper examines the impact that phenotypic flexibility, behavioural inheritance and socially transmitted cultural traditions may have in shaping the structure and dynamics of a primate society--that of the bonnet macaque (Macaca radiata), a primate species endemic to peninsular India. Three principal issues are considered: the role of phenotypic flexibility in shaping social behaviour, the occurrence of individual behavioural traits leading to the establishment of social traditions, and the appearance of cultural evolution amidst such social traditions. Although more prolonged observations are required, these initial findings suggest that phenotypic plasticity, behavioural inheritance and cultural traditions may be much more widespread among primates than have previously been assumed but may have escaped attention due to a preoccupation with genetic inheritance in zoological thinking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of mevalonate-2-C14, acetate-1-C14, and formate-C14 into the lipids of microorganisms was studied. In the case of four bacteria tested—Agrobacterium tumefaciens, Azotobacter vinelandii, Escherichia coli, and a Pseudomonas species—the various homologues of coenzyme Q present were not labeled with any of the tracers used, although significant amounts of radioactivity were present in the lipids. Both acetate and mevalonate were incorporated into coenzyme Q and sterol of the moulds, Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Gibberella fujickuroi, and a yeast, Torulopsis utilis. Mevalonate was incorporated into the side chain but not the ring, whereas acetate was incorporated into both. It appears that the mevalonate pathway for the synthesis of coenzyme Q is operative only in those organisms which also contain other isoprene compounds such as sterol and carotene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coil encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and hightemperature stress. Purified PepA and PepB display broad substratespecificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extra-vacuolar nucleus is visible in a small percentage of living cells from 72–96 hour wort cultures. The vacuoles show a luminous boundary under dark ground illumination. The details observed in living nuclei could be stained with haematoxylin after fixation in iodine-formaldehyde-acetic acid mixture. The Feulgen-negative nature of the vacuole and the limitation of the Feulgen-positive material to the area bounded by the nuclear membrane would imply that the ‘centrosome’ described by Lindegren and Rafalko (1950) is the real nucleus. The nucleus ofS. bayanus conforms in its structure to those of higher organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses.Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.