100 resultados para Two-body correlation
Resumo:
The relationship between the as-cast microstructure and creep behaviour of the heat-resistant MRI230D Mg alloy produced by two different casting technologies is investigated. The alloy in both ingot-casting (IC) and high pressure die-casting (HPDC) conditions consists of alpha-Mg, 06 ((Mg,AI)(2)Ca), Al-Mn and Sn-Mg-Ca rich phases. However, the HPDC alloy resulted in relatively finer grain size and higher volume fraction of finer, denser network of eutectic C36 phase in the as-cast microstructure as compared to that of the IC alloy. The superior creep resistance exhibited by the HPDC alloy at all the stress levels and temperatures employed in the present investigation was attributed to the more effective dispersion strengthening effect caused by the presence of finer and denser network of the C36 phase. The increased amount of the eutectic C36 phase was the only change observed in the microstructures of both alloys following creep tests. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.
Resumo:
As the conventional MOSFETs scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible andidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body, is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point" is introduced, which proves that the charge-based definition is more accurate than the potential based definition. The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by, potential based definition while it is monotonous for change based definition. The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current" method or simply "TD" method. The trend of threshold voltage variation is found some in both the cases which support charge-based definition.
Resumo:
Two different definitions, one is potential based and the other is charge based, are used in the literatures to define the threshold voltage of undoped body symmetric double gate transistors. This paper, by introducing a novel concept of crossover point, proves that the charge based definition is more accurate than the potential based definition. It is shown that for a given channel length the potential based definition predicts anomalous change in threshold voltage with body thickness variation while the charge based definition results in monotonous change. The threshold voltage is then extracted from drain current versus gate voltage characteristics using linear extrapolation, transconductance and match-point methods. In all the three cases it is found that trend of threshold voltage variation support the charge based definition.
Resumo:
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems in GaAs/AlGaA heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional nonmagnetic high-mobility 2D systems, the thermopower in our devices increases with decreasing temperature below 0.3 K, reaching values in excess of 100 mu V/K, thus exceeding the free electron estimate by more than 2 orders of magnitude. With support from a parallel study of the local density of states, we suggest such a phenomenon to be linked to intrinsic localized states and many-body spin correlations in the system.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.
Resumo:
The far-ultraviolet region circular dichroic spectrumof serine hydroxymethyltransferase from monkey liver showed that the protein is in an α-helical conformation. The near ultraviolet circular dichoric spectrum revealed two negative bands originating from the tertiary conformational environment of the aromatic amino acid residues. Addition of urea or guanidinium chloride perturbed the characteristic fluorescence and far ultraviolet circular dichroic spectrum of the enzyme. The decrease in (θ)222 and enzyme activity followed identical patterns with increasing concentrations of urea, whereas with guanidinium chloride, the loss of enzyme activity preceded the loss of secondary structure. 2-Chloroethanol, trifluoroethanol and sodium dodecyl sulphate enhanced the mean residue ellipticity values. In addition, sodium dodecyl sulphate also caused a perturbation of the fluorescence emission spectrum of the enzyme. Extremes of pH decreased the – (θ)222 value. Plots of –(θ)222and enzyme activity as a function of pH showed maximal values at pH 7.4-7.5. These results suggested the prevalence of "conformational flexibility" in the structure of serine hydroxymethyltransferase.
Resumo:
The modified local stability scheme is applied to several two-dimensional problems—blunt body flow, regular reflection of a shock and lambda shock. The resolution of the flow features obtained by the modified local stability scheme is found to be better than that achieved by the other first order schemes and almost identical to that achieved by the second order schemes incorporating artificial viscosity. The scheme is easy for coding, consumes moderate amount of computer storage and time. The scheme can be advantageously used in place of second order schemes.
Resumo:
A method for separation of stresses in two and three-dimensional photo elasticity using the harmonisation ofjrst stress invariant along a straight section is deve- ,dped. For two-dimensions, the equations of equilibrium are reformulated in terms ojsum and difference of normal stresses and relations are obtained which can be used for harmonisation of the first invariant of stress along a straight section. A similar procedure is adopted for three-dimensions by making use of the Beltrmi-MicheN equations. The new relations are used in finite d~yerencefo rm to evaluate the sum of normal stresses along straight sections in a three-dimensional body. The method requires photoelastic data along the section as well ~rra djacent sections. This method could be used as an alternative to the shear d@erence method for separation of stresses in photoelasticity. 7he accuracy and reliability of the method is ver$ed by applying the method to problems whose solutions are known.
Resumo:
We present a new method for establishing correlation between deuterium and its attached carbon in a deuterated liquid crystal. The method is based on transfer of polarization using the DAPT pulse sequence proposed originally for two spin half nuclei, now extended to a spin-1 and a spin-1/2 nuclei. DAPT utilizes the evolution of magnetization of the spin pair under two blocks of phase shifted BLEW-12 pulses on one of the spins separated by a 90 degree pulse on the other spin. The method is easy to implement and does not need to satisfy matching conditions unlike the Hartmann-Hahn cross-polarization. Experimental results presented demonstrate the efficacy of the method.
Resumo:
A construction for a family of sequences over the 8-ary AM-PSK constellation that has maximum nontrivial correlation magnitude bounded as theta(max) less than or similar to root N is presented here. The famfly is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM with theta(max) less than or similar to root 2 root N. These families are constructed by interleaving sets of sequences. A construction for a famBy of low-correlation sequences over QAM alphabet of size 2(2m) is presented with maximum nontrivial normalized correlation parameter bounded above by less than or similar to a root N, where N is the period of the sequences in the family and where a ranges from 1.61 in the case of 16-QAM modulation to 2.76 for large m. When used in a CDMA setting, the family will permit each user to modulate the code sequence with 2m bits of data. Interestingly, the construction permits users on the reverse link of the CDMA channel to communicate using varying data rates by switching between sequence famflies; associated to different values of the parameter m. Other features of the sequence families are improved Euclidean distance between different data symbols in comparison with PSK signaling and compatibility of the QAM sequence families with sequences belonging to the large quaternary sequence families {S(p)}.
Resumo:
We discuss a technique for solving the Landau-Zener (LZ) problem of finding the probability of excitation in a two-level system. The idea of time reversal for the Schrodinger equation is employed to obtain the state reached at the final time and hence the excitation probability. Using this method, which can reproduce the well-known expression for the LZ transition probability, we solve a variant of the LZ problem, which involves waiting at the minimum gap for a time t(w); we find an exact expression for the excitation probability as a function of t(w). We provide numerical results to support our analytical expressions. We then discuss the problem of waiting at the quantum critical point of a many-body system and calculate the residual energy generated by the time-dependent Hamiltonian. Finally, we discuss possible experimental realizations of this work.
Resumo:
Hydrothermal reactions between uranium salts and arsenic pentoxide in the presence of two different amines yielded six new uranium arsenate phases exhibiting open-framework structures, ethylenediamine (en): [C2N2H9]-[(UO2)(ASO(4))] I; [C2N2H10][(UO2)F(HASO(4))]2 center dot 4H(2)O, II; [C2N2H9][U2F5(HASO(4))(2)], III; [C2N2H9][UF2(ASO(4))], IV; diethylenetriamine (DETA), [C4N3H16][U2F3(ASO(4))(2)(HAsO4)] V; and [C4N3H16][U2F6(AsO4)(HAsO4)], VI. The structures were determined using single crystal studies, which revealed two- (I, II, V) and three-dimensional (III, IV, VI) structures for the uranium arsenates. The uranium atom, in these compounds, exhibits considerable variations in the coordination (6 to 9) that appears to have some correlation with the synthetic conditions. The water molecules in [C2N2H10][(UO2)F(HAsO4)](2 center dot)4H(2)O, II, could be reversibly removed, and the dehydrated phase, [C2N2H10][(UO2)F(HAsO4)](2), IIa, was also characterized using single crystal studies. The observation of many mineralogical structures in the present compounds suggests that the hydrothermal method could successfully replicate the geothermal conditions. As part of this study, we have observed autunite, Ca[(UO2)(PO4)](2)(H2O)(11), metavauxite, [Fe(H2O)(6)][Al(OH)(H2O)(PO4)](2), finarite, PbCU(SO4)(OH)(2), and tancoite, LiNa2H[Al(PO4)(2)(OH)], structures. The repeated observation of the secondary building unit, SBU-4, in many of the uranium arsenate structures suggests that these are viable building units. Optical studies on the uranium arsenate compound, [C4N3H16][U2F6(AsO4)(HASO(4))), VI, containing uranium in the +4 oxidation state indicates a blue emission through an upconversion process. The compound also exhibits antiferromagnetic behavior.