63 resultados para Tumour-specific bacterial growth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of nerve growth factor to organ cultures of superior cervical ganglia from immature rats specifically stimulated the incorporation of 32P-orthophosphate into phosphatidylinositol fraction. Equimolar concentrations of other hormones such as insulin, glucagon, thyroxine and growth hormone did not cause any stimulation of the incorporation of 14C-myoinositol into phosphatidylinositol. The stimulation of phosphatidylinositol turnover was observed over a concentration of nerve growth factor ranging from 10?10M to 10?7M. Nerve growth factor specific �inositide effect� was found to be sensitive to nerve growth factor antibody, 2,4-dinitrophenol, a high concentration of bovine growth hormones but not to Actinomycin D. The physiological significance of this finding in relation to nerve growth factor action in this target tissue is discussed.NGF, Nerve Growth Factor; SCG, Superior Cervical Ganglia; PI, Phosphatidylinositol

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Earlier we reported that an oral administration of two mannose-specific dietary lectins, banana lectin (BL) and garlic lectin (GL), led to an enhancement of hematopoietic stem and progenitor cell (HSPC) pool in mice. STUDY DESIGN AND METHODS: Cord blood derived CD34+ HSPCs were incubated with BL, GL, Dolichos lectin (DL), or artocarpin lectin (AL) for various time periods in a serum- and growth factor free medium and were subjected to various functional assays. Reactive oxygen species (ROS) levels were detected by using DCHFDA method. Cell fractionation was carried out using lectin-coupled paramagnetic beads. RESULTS: CD34+ cells incubated with the lectins for 10 days gave rise to a significantly higher number of colonies compared to the controls, indicating that all four lectins possessed the capacity to protect HSPCs in vitro. Comparative analyses showed that the protective ability of BL and GL was better than AL and DL and, therefore, further experiments were carried out with them. The output of long-term culture-initiating cell (LTC-IC) and extended LTC-IC assays indicated that both BL and GL protected primitive stem cells up to 30 days. The cells incubated with BL or GL showed a substantial reduction in the ROS levels, indicating that these lectins protect the HSPCs via antioxidant mechanisms. The mononuclear cell fraction isolated by lectin-coupled beads got enriched for primitive HSPCs, as reflected in the output of phenotypic and functional assays.CONCLUSION: The data show that both BL and GL protect the primitive HSPCs in vitro and may also serve as cost-effective HSPC enrichment tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma (GBM; grade IV astrocytoma) is the most malignant and common primary brain tumor in adults. Using combination of 2-DE and MALDI-TOF MS, we analyzed 14 GBM and 6 normal control sera and identified haptoglobin alpha 2 chain as an up-regulated serum protein in GBM patients. GBM-specific up-regulation was confirmed by ELISA based quantitation of haptoglobin (Hp) in the serum of 99 GBM patients as against lower grades (49 grade III/AA; 26 grade II/DA) and 26 normal individuals (p = 0.0001). Further validation using RT-qPCR on an independent set (n = 78) of tumor and normal brain (n = 4) samples and immunohistochemcial staining on a subset (n = 42) of above samples showed increasing levels of transcript and protein with tumor grade and were highest in GBM (p = < 0.0001 and < 0.0001, respectively). Overexpression of Hp either by stable integration of Hp cDNA or exogenous addition of purified Hp to immortalized astrocytes resulted in increased cell migration. RNAi-mediated silencing of Hp in glioma cells decreased cell migration. Further, we demonstrate that both human glioma and mouse melanoma cells overexpressing Hp showed increased tumor growth. Thus, we have identified haptoglobin as a GBM-specific serum marker with a role on glioma tumor growth and migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of ornithine decarboxylase elicited in response to nerve-growth factor in target organs is greatly decreased by preincubation of these tissues with cytoskeletal poisons such as vinblastine, diamide, cytochalasin B and colchicine. These results are interpreted as evidence for the involvement of receptor-associated cytoskeletal structures in mediating the nerve-growth-factor-specific induction of ornithine decarboxylase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of ornithine decarboxylase elicited in response to nerve-growth factor in target organs is greatly decreased by preincubation of these tissues with cytoskeletal poisons such as vinblastine, diamide, cytochalasin B and colchicine. These results are interpreted as evidence for the involvement of receptor-associated cytoskeletal structures in mediating the nerve-growth-factor-specific induction of ornithine decarboxylase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is known to reside latently in a significant fraction of the human population. Although the bacterium possesses an aerobic mode of metabolism, it adapts to persistence under hypoxic conditions such as those encountered in granulomas. While in mammalian systems hypoxia is a recognized DNA-damaging stress, aspects of DNA repair in mycobacteria under such conditions have not been studied. We subjected Mycobacterium smegmatis, a model organism, to the Wayne's protocol of hypoxia. Analysis of the mRNA of a key DNA repair enzyme, uracil DNA glycosylase (Ung), by real-time reverse transcriptase PCR (RT-PCR) revealed its downregulation during hypoxia. However, within an hour of recovery of the culture under normal oxygen levels, the Ung mRNA was restored. Analysis of Ung by immunoblotting and enzyme assays supported the RNA analysis results. To understand its physiological significance, we misexpressed Ung in M. smegmatis by using a hypoxia-responsive promoter of narK2 from M. tuberculosis. Although the misexpression of Ung during hypoxia decreased C-to-T mutations, it compromised bacterial survival upon recovery at normal oxygen levels. RT-PCR analysis of other base excision repair gene transcripts (UdgB and Fpg) suggested that these DNA repair functions also share with Ung the phenomenon of downregulation during hypoxia and recovery with return to normal oxygen conditions. We discuss the potential utility of this phenomenon in developing attenuated strains of mycobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystals (up to 1 cm size) of K, Rb and Cs periodates have been grown in silica gel. In general, good quality crystals were obtained in gel of specific gravity 1.04 and pH 4. The metal/iodine ratios were determined and compared with calculated values. Morphological studies were carried out using a bicircle optical goniometer. Other characterization methods include X-ray diffraction, optical absorption, differential scanning calorimetry and optical microscopy. Microscopic examination of CsIO4 crystals in particular has revealed the existence of ferroelastic domains in the crystal. The structural basis for the occurence of ferroelasticity in this crystal is discussed and the high temperature space group is predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase separation in fluids close to a critical point can be observed in the form of either an interconnected pattern (critical case) or a disconnected pattern (off-critical case). These two regimes have been investigated in different ways. First, a sharp change in pattern is shown to occur very close to the critical point when the composition is varied. No crossover has been observed between the t1 behaviour (interconnected) and a t1/3 behaviour (disconnected), where t is time. This latter growth law, which occurs in the case of compact droplets, will be discussed. Second, it has been observed that a growing interconnected pattern leaves a signature in the form of small droplets. The origin of such a distribution will be discussed in terms of coalescence of domains. No distribution of this kind is observed in the off-critical case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics (LEFM) has been widely used in the past for fatigue crack growth studies, but this is acceptable only in situations which are within small scale yielding (SSY). In many practical structural components, conditions of SSY could be violated and one has to look for fracture criteria based on elasto-plastic analysis. Crack closure phenomenon, one of the most striking discoveries based on inelastic deformations during crack growth, has significant effect on fatigue crack growth rate. Numerical simulation of this phenomenon is computationally intensive and involved but has been successfully implemented. Stress intensity factors and strain energy release rates lose their meaning, J-integral (or its incremental) values are applicable only in specific situations, whereas alternate path independent integrals have been proposed in the literature for use with elasto-plastic fracture mechanics (EPFM) based criteria. This paper presents certain salient features of two independent finite element (numerical) studies of relevance to fatigue crack growth, where elasto-plastic analysis becomes significant. These problems can only be handled in the current day computational environment, and would have been only a dream just a few years ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, pro-differentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 mu M. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 mu M and 1 mu M concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 mu M. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 mu m thick metal foil, 200 mM CaCl(2), 1 ng/mu l plasmid DNA concentration, and 1 x 10(9) cell density. The highest transformation efficiency achieved (1 x 10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1 x 10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regulation of phospholipid biosynthesis in Saccharomyces cerevisiae through cis-acting upstream activating sequence inositol (UAS(ino)) and trans-acting elements, such as the INO2-INO4 complex and OPI1 by inositol supplementation in growth is thoroughly studied. In this study, we provide evidence for the regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C (PLC) through UAS(ino) and the trans-acting elements. Gene expression analysis and radiolabelling experiments demonstrated that the overexpression of rice PLC in yeast cells altered phospholipid biosynthesis at the levels of transcriptional and enzyme activity. This is the first report implicating PLC in the direct regulation of lipid biosynthesis. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.