525 resultados para Trichloroacetic acid (TCA)
Resumo:
The morphology and crystal growth of poly(l-lactic acid), PLLA have been studied from the melt as a function of undercooling and molecular weight using hot stage microscopy. Attention has been given to the application of growth rate equation on the growth rate data of PLLA and thus various nucleation parameters have been calculated. The criteria of Regime I and Regime II types of crystallization has been applied for the evaluation of substrate lengths.
Resumo:
2 V/40 Ah valve-regulated lead-acid (VRLA) cells have been constructed with negative plates employing carbon black as well as an admixture of carbon black fumed silica as additives in negative active material for partial-state-of-charge (PSoC) applications. Electrical performance of such cells is compared with conventional 2 V/40 Ah VRLA cells for PSoC operation. Active material utilization has been found to be higher for carbon-black fumed-silica mixed negative plates while formation is faster for cells with carbon-black mixed negative plates. Both faradaic efficiency and percentage capacity delivered have been found to be higher for cells with carbon-black + fumed-silica mixed negative plates. However, a high self-discharge rate is observed for cells with carbon-black + fumed-silica mixed negative plates.
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2-/- mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet. Bile composition, serum biochemistry, liver histology, fibrosis, and expression of key detoxification and transport systems were investigated. Direct choleretic effects were addressed in isolated bile duct units. The role of Cftr for norUDCA-induced choleresis was explored in Cftr-/- mice. norUDCA had pharmacologic features that were not shared by its derivatives, including the increase in hepatic and serum bile acid levels and a strong stimulation of biliary HCO3- -output. norUDCA directly stimulated fluid secretion in isolated bile duct units in a HCO3- -dependent fashion to a higher extent than the other bile acids. Notably, the norUDCA significantly stimulated HCO 3- -output also in Cftr-/- mice. In Mdr2-/- mice, cholangitis and fibrosis strongly improved with norUDCA, remained unchanged with tauro- norUDCA, and worsened with di norUDCA. Expression of Mrp4, Cyp2b10, and Sult2a1 was increased by norUDCA and di norUDCA, but was unaffected by tauro- norUDCA. Conclusion:The relative resistance of norUDCA to amidation may explain its unique physiologic and pharmacologic properties. These include the ability to undergo cholehepatic shunting and to directly stimulate cholangiocyte secretion, both resulting in a HCO3- -rich hypercholeresis that protects the liver from cholestatic injury.
Resumo:
A number of bile acid derived photoinduced electron transfer (PET) based sensors for metal ions are prepared. A general strategy for designing the sensor with a modular nature allows for making different molecules capable of sensing different metal ions by a change in the fluorophore and receptor unit. Keeping the basic molecular structure the same, different bile acid base fluoroionophores were prepared inorder to achieve the highest sensitivity toward the metal ions. Thesensors showed similar binding constants for the same metal ion, but the degree Of fluorescence enhancement upon addition of the metal salts were different. The sensitivities of the sensors towards a certain metal were determined from the observed fluorescence enhancement upon addition of the metal salt.
Resumo:
Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.
Resumo:
In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.
Resumo:
Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.
Resumo:
The possible conformations of sialic acid were analysed using semi-empirical potential functions. The solid state conformation has approx. 0.2 kcal/mol higher energy than the minimum energy conformation. These studies suggest that in solution sialic acid may exist preponderantly in two different conformations which differ in the orientation of the terminal hydroxymethyl group of glycerol side-chain. The present model is consistent with 1H- and 13C-NMR data, but differs from the earlier models.
Resumo:
The oxidative degradation of poly(acrylic acid) (PAA), a water soluble polymer, was studied at various temperatures with different concentrations of persulfates, potassium persulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS). The photodegradation of PAA was also examined with APS as oxidizer. The degraded samples were analyzed for the time evolution of molecular weight distribution by gel permeation chromatography. A theoretical model based on the continuous distribution kinetics was developed that accounted for the polymer degradation and the dissociation of persulfate. The rate coefficients for the oxidative and photooxidative degradation of PAA were determined from the parametric fit of the model with experimental data. The rate of degradation increased with increasing amount of persulfate in both oxidative and photooxidative degradation. The rate of degradation also increased with increasing temperature in the case of oxidative degradation.
Resumo:
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.
Resumo:
A new triterpene acid, was isolated from the fruits of Barringtonia speciosa. Its structure was established as 2α,3β,19α-trihydroxyolean-12-ene-24,28-dioic acid from chemical and spectroscopic data and confirmed by its conversion into methyl sericiale.