39 resultados para Transgenic rice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epsilon 4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing epsilon 3 and epsilon 4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epsilon 4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing epsilon 3 and epsilon 4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the human microtubule-associated protein tau (hMAPT) gene including R406W and V337M result in autosomal dominant neurodegenerative disorder. These mutations lead to hyperphosphorylation and aggregation of Tau protein which is a known genetic factor underlying development of Alzheimer's disease (AD). In the present study, transgenic Drosophila models of AD expressing wild-type and mutant forms of hMAPT exhibit a progressive neurodegeneration which was manifested in the form of early death and impairment of cognitive ability. Moreover, they were also found to have significantly decreased activity of neurotransmitter enzymes accompanied by decreased cellular endogenous antioxidant profile. The extent of neurodegeneration, memory impairment, and biochemical profiles was different in the tau transgenic strains which indicate multiple molecular and cellular responses underlie each particular form of hMAPT.