62 resultados para Transfer processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge-transfer (CT) excitations are essential for photovoltaic phenomena in organic solar cells. Owing to the complexity of molecular geometries and orbital coupling, a detailed analysis and spatial visualisation of CT processes can be challenging. In this paper, a new detail-oriented visualisation scheme, the particle-hole map (PHM), is applied and explained for the purpose of spatial analysis of excitations in organic molecules. The PHM can be obtained from the output of a time-dependent density-functional theory calculation with negligible additional computational cost, and provides a useful physical picture for understanding the origins and destinations of electrons and holes during an excitation process. As an example, we consider intramolecular CT excitations in Diketopyrrolopyrrole-based molecules, and relate our findings to experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sputter deposition of YBa2Cu3O7-x in a de-diode was performed in pure oxygen medium and an optical spectroscopic study of the resultant discharge revealed strong emissions from both metal atoms and oxygen ions. Emission intensities were studied in pressure range from 0.5 to 3 mbar, with substrate temperatures from 150 to 850 degrees C. Raising the substrate temperature to 850 degrees C increased the number of positive ions and excited neutral atoms. Raising the pressure decreased the emission intensities of excited neutral and ionic species. The results have been compared with those obtained from Langmuir probe measurements. The rise in emission intensities of excited neutrals and ions with temperature suggested the possibility of chemically enhanced physical sputtering of YBa2Cu3O7-x. The effect of process conditions on film composition and quality is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction has an important influence in metal forming operations, as it contributes to the success or otherwise of the process. In the present investigation, the effect of friction on metal forming was studied by simulating compression tests on cylindrical Al-Mg alloy using the finite element method (FEM) technique. Three kinds of compression tests were considered wherein a constant coefficient of friction was employed at the upper die-work-piece interface. However, the coefficient of friction between the lower die-work-piece interfaces was varied in the tests. The simulation results showed that a difference in metal flow occurs near the interfaces owing to the differences in the coefficient of friction. It was concluded that the variations in the coefficient of friction between the dies and the work-piece directly affect the stress distribution and shape of the work-piece, having implications on the microstructure of the material being processed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture influences friction and transfer layer formation during sliding. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the effect of directionality of surface grinding marks of hard material on friction and transfer layer formation during sliding against soft materials. 080 M40 steel plates were ground to attain different surface roughness with unidirectional grinding marks. Then pins made of soft materials such as pure Al, pure Mg and Al-Mg alloy were slid against the prepared steel plates. Grinding angle (i.e., the angle between direction of sliding and grinding marks) was varied between 0 degrees and 90 degrees in the tests. Experiments were conducted under both dry and lubricated conditions on each plate in ambient environment. It was observed that the transfer layer formation and the coefficient of friction, which has two components adhesion and plowing - depend primarily on the directionality of grinding marks of the harder mating surface, and independent of surface roughness of the harder mating surface. For the case of pure Mg, stick-slip phenomenon was observed under dry condition for all grinding angles and it was absent upto 20 degrees grinding angles under lubricated condition. However, for the case of Al, it was observed only under lubricated conditions for angles exceeding 20 degrees. As regards the alloy, namely, Al-Mg alloy, it, was absent in both conditions. For the case of pure Mg and Al, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The grinding angle effect on coefficient of friction was attributed to the variation of plowing component of friction with grinding angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture plays an important role in the frictional behavior and transfer layer formation of contacting surfaces. In the present investigation, basic experiments were conducted using an inclined pin-on-plate sliding apparatus to better understand the role of surface texture on the coefficient of friction and the formation of a transfer layer. In the experiments, soft HCP materials such as pure Mg and pure Zn were used for the pins and a hardened 080 M40 steel was used for the plate. Two surface parameters of the steel plates—roughness and texture—were varied in tests that were conducted at a sliding speed of 2 mm/s in ambient conditions under both dry and lubricated conditions. The morphologies of the worn surfaces of the pins and the formation of the transfer layer on the counter surfaces were observed using a scanning electron microscope. In the experiments, the occurrence of stick-slip motion, the formation of a transfer layer, and the value of friction were recorded. With respect to the friction, both adhesion and plowing components were analyzed. Based on the experimental results, the effect of surface texture on the friction was attributed to differences in the amount of plowing. Both the plowing component of friction and the amplitude of stick-slip motion were determined to increase surface textures that promote plane strain conditions and decrease the textures that favor plane stress conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is presented. This study is based on the generalized multidimensional hybrid model, which not only includes the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent. The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only over a range of 5000-6000 cm(-1) (compared to the experimentally observed range of 10000 cm(-1) reported by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which might be necessary to fully understand the observed free energy gap dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C60Br8, unlike C60Br6 and C60Cl6, forms a solid charge-transfer compound with tetrathiafulvalene (TTF), the composition being C60Br8(TTF)(8). The unique complex-forming property of C60Br8 can be understood on the basis of the electronic structures of the halogenated derivatives of C-60. Molecular orbital calculations show that the low LUMO energy of C60Br8 compared with the other halogen derivatives renders the formation of the complex with TTF favourable, the four virtual LUMOs being able to accept 8 electrons. The Raman spectrum of C60Br8(TTF)(8) shows a marked softening of the bands (-46 cm(-1) on average) with respect to C60Br8 suggesting that indeed 8 electrons are transferred per C60Br8 molecule, one from each TTF molecule. The complex is weakly paramagnetic and shows a magnetic transition around 80 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our previous report on resonance energy transfer from a dye molecule to graphene [J. Chem. Phys.129, 054703 (2008)], we had derived an expression for the rate of energy transfer from a dye to graphene. An integral in the expression for the rate was evaluated approximately. We found a Yuwaka-type dependence of the rate on the distance. We now present an exact evaluation of the integral involved, leading to very interesting results. For short distances (z < 20 A), the present rate and the previous rate are in good agreement. For larger distances, the rate is found to have a z(-4) dependence on the distance, exactly. Thus we predict that for the case of pyrene on graphene, it is possible to observe fluorescence quenching up to a distance of 300 A. This is in sharp contrast to the traditional fluorescence resonance energy transfer where the quenching is observable only up to 100 A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energetics of the ground and excited state intramolecular proton transfer in salicylic acid have been studied by ab initio molecular orbital calculations using the 6-31G** basis set at the restricted Hartree-Fock (RHF) and configuration interaction-single excitation (CIS) levels and also using the semiempirical method AM1 at the RHF level as well as with single and pair doubles excitation configuration interaction spanning eight frontier orbitals (PECI = 8). The ab initio potential energy profile for intramolecular proton transfer in the ground state reveals a single minimum corresponding to the primary form, in the first excited singlet state, however, there are two minima corresponding to the primary and tautomeric forms, separated by a barrier of similar to 6 kcal/mol, thus accounting for dual emission in salicylic acid. Electron density changes with electronic excitation and tautomerism indicate no zwitterion formation. Changes in spectral characteristics with change in pH, due to protonation and deprotonation of salicylic acid, are also accounted for, qualitatively. Although the AM1 calculations suggest a substantial barrier for proton transfer in the ground as well as the first excited state of SA, it predicts the transition wavelength in near quantitative accord with the experimental results for salicylic acid and its protonated and deprotonated forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissipation rate of turbulent kinetic energy (epsilon) is a key parameter for mixing in surface aerators. In particular, determination epsilon across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix (R) calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.