71 resultados para Trajectories


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of automated multiagent search in an unknown environment. Autonomous agents equipped with sensors carry out a search operation in a search space, where the uncertainty, or lack of information about the environment, is known a priori as an uncertainty density distribution function. The agents are deployed in the search space to maximize single step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for the proposed sequential deploy and search strategy. It is shown that with the proposed control law the agent trajectories converge in a globally asymptotic manner to the centroidal Voronoi configuration. Simulation experiments are provided to validate the strategy. Note to Practitioners-In this paper, searching an unknown region to gather information about it is modeled as a problem of using search as a means of reducing information uncertainty about the region. Moreover, multiple automated searchers or agents are used to carry out this operation optimally. This problem has many applications in search and surveillance operations using several autonomous UAVs or mobile robots. The concept of agents converging to the centroid of their Voronoi cells, weighted with the uncertainty density, is used to design a search strategy named as sequential deploy and search. Finally, the performance of the strategy is validated using simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a one-locus selection model, Svirezhev introduced an integral variational principle by defining a Lagrangian which remained stationary on the trajectory followed by the population undergoing selection. It is shown here (i) that this principle can be extended to multiple loci in some simple cases and (ii) that the Lagrangian is defined by a straightforward generalization of the one-locus case, but (iii) that in two-locus or more general models there is no straightforward extension of this principle if linkage and epistasis are present. The population trajectories can be constructed as trajectories of steepest ascent in a Riemannian metric space. A general method is formulated to find the metric tensor and the surface-in the metric space on which the trajectories, which characterize the variations in the gene structure of the population, lie. The local optimality principle holds good in such a space. In the special case when all possible linkage disequilibria are zero, the phase point of the n-locus genetic system moves on the surface of the product space of n higher dimensional unit spheres in a certain Riemannian metric space of gene frequencies so that the rate of change of mean fitness is maximum along the trajectory. In the two-locus case the corresponding surface is a hyper-torus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical solutions of the generalized Bloch equations for an arbitrary set of initial values of the x, y, and z magnetization components are given in the rotating frame. The solutions involve the decoupling of the three coupled differential equations such that a third-order differential equation in each magnetization variable is obtained. In contrast to the previously reported solutions given by Torrey, the present attempt paves the way for more direct physical insight into the behavior of each magnetization component. Special cases have been discussed that highlight the utility of the general solutions. Representative trajectories of magnetization components are given, illustrating their behavior with respect to the values of off-resonance and initial conditions. (C) 1995 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of multiagent search in an unknown environment. The agents are autonomous in nature and are equipped with necessary sensors to carry out the search operation. The uncertainty, or lack of information about the search area is known a priori as a probability density function. The agents are deployed in an optimal way so as to maximize the one step uncertainty reduction. The agents continue to deploy themselves and reduce uncertainty till the uncertainty density is reduced over the search space below a minimum acceptable level. It has been shown, using LaSalle’s invariance principle, that a distributed control law which moves each of the agents towards the centroid of its Voronoi partition, modified by the sensor range leads to single step optimal deployment. This principle is now used to devise search trajectories for the agents. The simulations were carried out in 2D space with saturation on speeds of the agents. The results show that the control strategy per step indeed moves the agents to the respective centroid and the algorithm reduces the uncertainty distribution to the required level within a few steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of some new planes such as the R-x, R2-x (where R represents in the n-dimensional phase space, the radius vector from the origin to any point on the trajectory described by the system) is suggested for analysis of nonlinear systems of any kind. The stability conditions in these planes are given. For easy understanding of the method, the transformation from the phase plane to the R-x, R2-x planes is brought out for second-order systems. In general, while these planes serve as useful as the phase plane, they have proved to be simpler in determining quickly the general behavior of certain classes of second-order nonlinear systems. A chart and a simple formula are suggested to evaluate time easily from the R-x and R2-x trajectories, respectively. A means of solving higher-order nonlinear systems is also illustrated. Finally, a comparative study of the trajectories near singular points on the phase plane and on the new planes is made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of certain second-order nonlinear systems, not easily amenable to the phase-plane methods, and described by either of the following differential equations xÿn-2ÿ+ f(x)xÿ2n+g(x)xÿn+h(x)=0 ÿ+f(x)xÿn+h(x)=0 n≫0 can be effected easily by drawing the entire portrait of trajectories on a new plane; that is, on one of the xÿnÿx planes. Simple equations are given to evaluate time from a trajectory on any of these n planes. Poincaré's fundamental phase plane xÿÿx is conceived of as the simplest case of the general xÿnÿx plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper suggests the use of simple transformations like ÿ=kx, kx2 for second-order nonlinear differential equations to effect rapid plotting of the phase-plane trajectories. The method is particularly helpful in determining quickly the trajectory slopes along simple curves in any desired region of the phase plane. New planes such as the tÿ-x, tÿ2-x are considered for the study of some groups of nonlinear time-varying systems. Suggestions for solving certain higher-order nonlinear systems are also made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent simulations of the stretching of tethered biopolymers at a constant speed v (Ponmurugan and Vemparala, 2011 Phys. Rev. E 84 060101(R)) have suggested that for any time t, the distribution of the fluctuating forces f responsible for chain deformation is governed by a relation of the form P(+ f)/ P(- f) = expgamma f], gamma being a coefficient that is solely a function of v and the temperature T. This result, which is reminiscent of the fluctuation theorems applicable to stochastic trajectories involving thermodynamic variables, is derived in this paper from an analytical calculation based on a generalization of Mazonka and Jarzynski's classic model of dragged particle dynamics Mazonka and Jarzynski, 1999 arXiv:cond-\textbackslashmat/9912121v1]. However, the analytical calculations suggest that the result holds only if t >> 1 and the force fluctuations are driven by white rather than colored noise; they further suggest that the coefficient gamma in the purported theorem varies not as v(0.15)T-(0.7), as indicated by the simulations, but as vT(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.