229 resultados para Tomography, optical coherence
Resumo:
Purpose: Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. Methods: The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. Results: The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. Conclusions: The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time. (C) 2013 American Association of Physicists in Medicine. http://dx.doi.org/10.1118/1.4792459]
Resumo:
A new approach that can easily incorporate any generic penalty function into the diffuse optical tomographic image reconstruction is introduced to show the utility of nonquadratic penalty functions. The penalty functions that were used include quadratic (l(2)), absolute (l(1)), Cauchy, and Geman-McClure. The regularization parameter in each of these cases was obtained automatically by using the generalized cross-validation method. The reconstruction results were systematically compared with each other via utilization of quantitative metrics, such as relative error and Pearson correlation. The reconstruction results indicate that, while the quadratic penalty may be able to provide better separation between two closely spaced targets, its contrast recovery capability is limited, and the sparseness promoting penalties, such as l(1), Cauchy, and Geman-McClure have better utility in reconstructing high-contrast and complex-shaped targets, with the Geman-McClure penalty being the most optimal one. (C) 2013 Optical Society of America
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.
Resumo:
The sparse estimation methods that utilize the l(p)-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These l(p)-norm-based regularizations make the optimization function nonconvex, and algorithms that implement l(p)-norm minimization utilize approximations to the original l(p)-norm function. In this work, three such typical methods for implementing the l(p)-norm were considered, namely, iteratively reweighted l(1)-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of l(p)-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. (C) 2014 Optical Society of America
Resumo:
An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The proposed method was compared with the recently established data-resolution matrix-based approach for optimal choice of independent measurements and shown, using simulated and experimental gelatin phantom data sets, to be superior as it does not require an optimal regularization parameter for providing the same information. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.
Resumo:
Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. (C) 2015 Optical Society of America
Resumo:
Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (mu(a)) and scattering coefficient (mu(s)) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) mu(s) of the medium is much greater than mu(a) (mu(s) >> mu(a)). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such a scheme, the spectroscopic variation of absorption coefficient in the tissue can be used to arrive at the oxygenation changes in the tissue. (C) 2016 AIP Publishing LLC.
Resumo:
A method for reconstruction of an object f(x) x=(x,y,z) from a limited set of cone-beam projection data has been developed. This method uses a modified form of convolution back-projection and projection onto convex sets (POCS) for handling the limited (or incomplete) data problem. In cone-beam tomography, one needs to have a complete geometry to completely reconstruct the original three-dimensional object. While complete geometries do exist, they are of little use in practical implementations. The most common trajectory used in practical scanners is circular, which is incomplete. It is, however, possible to recover some of the information of the original signal f(x) based on a priori knowledge of the nature of f(x). If this knowledge can be posed in a convex set framework, then POCS can be utilized. In this report, we utilize this a priori knowledge as convex set constraints to reconstruct f(x) using POCS. While we demonstrate the effectiveness of our algorithm for circular trajectories, it is essentially geometry independent and will be useful in any limited-view cone-beam reconstruction.
Resumo:
We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of diffuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for the Newton algorithm after establishing the existence of weak solutions for the forward equation of light amplitude autocorrelation and its Frechet derivative and adjoint. The asymptotic stability of the solution of the ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through numerical simulations in the context of both DCT and diffuse optical tomography. (C) 2010 Optical Society of America.
Resumo:
In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.
Resumo:
Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.
Resumo:
A simple technique involving the use of a rotating and a stationary diffuser has been developed to vary the spatial coherence of light from a He-Ne laser. Using this technique an experimental investigation of the dependence of rotation sensitivity of Lau fringes on the spatial coherence of the illuminating wavefield has been carried out. It is observed that (i) the rotation sensitivity of Lau fringes varies in a well-defined manner as a function of the spatial coherence of the light used; (ii) the extremely good rotation sensitivity of Lau fringes can be used to great advantage (compared to the conventional double slit method) in the measurement of the spatial coherence of a wavefield; (iii) Lau fringes are formed at various levels of spatial coherence and as such it appears that the Lau effect need not be associated with an incoherent optical field