53 resultados para Tire mechanics.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the Eringen's nonlocal elasticity theory has been incorporated into classical/local Bernoulli-Euler rod model to capture unique properties of the nanorods under the umbrella of continuum mechanics theory. The spectral finite element (SFE) formulation of nanorods is performed. SFE formulation is carried out and the exact shape functions (frequency dependent) and dynamic stiffness matrix are obtained as function of nonlocal scale parameter. It has been found that the small scale affects the exact shape functions and the elements of the dynamic stiffness matrix. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave dispersion properties of carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This lecture describes some recent attempts at unravelling the mechanics of the temperature distribution near ground, especially during calm, clear nights. In particular, a resolution is offered of the so-called Ramdas paradox, connected with observations of a temperature minimum some decimetres above bare soil on calm clear nights, in apparent defiance of the Rayleigh criterion for instability due to thermal convection. The dynamics of the associated temperature distribution is governed by radiative and convective transport and by thermal conduction, and is characterised by two time constants, involving respectively quick radiative adjustments and slow diffusive relaxation. The theory underlying the work described here suggests that surface parameters like ground emissivity and soil thermal conductivity can exert appreciable influence on the development of nocturnal inversions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the thermal vibration analysis of orthotropic nanoplates such as graphene, using the two variable refined plate theory and nonlocal continuum mechanics for small scale effects. The nanoplate is modeled based on two variable refined plate theory and the axial stress caused by the thermal effects is also considered. The two variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the nanoplate are derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temparature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. It can be concluded that the present theory, which does not require shear correction factor, is not only simple but also comparable to the first-order and higher order shear deformation theory. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the nanoplates. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the thermal vibration analysis of single-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and axial stress caused by the thermal effects is also considered. Nonlocal governing equation of motion for this graphene sheet system is derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using the Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temperature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. The thermal vibration analysis of single- and double-layer graphene sheets are considered for the analysis. The mode shapes of the respective graphene system are also captured in this work. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.