98 resultados para Time domain method
Resumo:
We computed Higuchi's fractal dimension (FD) of resting, eyes closed EEG recorded from 30 scalp locations in 18 male neuroleptic-naive, recent-onset schizophrenia (NRS) subjects and 15 male healthy control (HC) subjects, who were group-matched for age. Schizophrenia patients showed a diffuse reduction of FD except in the bilateral temporal and occipital regions, with the reduction being most prominent bifrontally. The positive symptom (PS) schizophrenia subjects showed FD values similar to or even higher than HC in the bilateral temporo-occipital regions, along with a co-existent bifrontal FD reduction as noted in the overall sample of NRS. In contrast, this increase in FD values in the bilateral temporo-occipital region was absent in the negative symptom (NS) subgroup. The regional differences in complexity suggested by these findings may reflect the aberrant brain dynamics underlying the pathophysiology of schizophrenia and its symptom dimensions. Higuchi's method of measuring FD directly in the time domain provides an alternative for the more computationally intensive nonlinear methods of estimating EEG complexity.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.
Resumo:
This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.
Resumo:
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion.
Evolution in the time series of vortex velocity fluctuations across different regimes of vortex flow
Resumo:
Investigations of vortex velocity fluctuation in time domain have revealed a presence of low frequency velocity fluctuations which evolve with the different driven phases of the vortex state in a single crystal of 2H-NbSe2. The observation of velocity fluctuations with a characteristic low frequency is associated with the onset of nonlinear nature of vortex flow deep in the driven elastic vortex state. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.
Resumo:
Analytical expressions which include depletion layer effects on low-injection carrier relaxation are being presented for the first time here. Starting from the continuity equation for the minority carriers, we derive expressions for the output signal pertinent to time-resolved microwave and luminescence experiments. These are valid for the time domain that usually overlaps with the time scales of surface processes, such as charge transfer and trapping. Apart from the usual pulse form of illumination, theoretical expressions pertaining to other forms of illumination such as switch-on and switch-off transient modes, a periodic mode, and a steady state and their various inter-relationships are derived here. The expressions obtained are seen to be generalizations of existing flat-band low-injection results in the Limit of early or initial band bendings. The importance of the depletion layer as an experimental parameter is clearly seen in the limit of larger band bendings wherein it is shown, unlike the flat-band case, to exhibit pure exponential forms of carrier relaxation. Our results are consistent with the main conclusions of the numerical and experimental work published recently. Furthermore, this work provides the actual functional relationships between the applied potential and observed carrier decay. This should enable one to extract the surface kinetic parameters, after deciding on the dominant mode of carrier relaxation at the interface, whether charge transfer or trapping, by studying the potential dependence of the fate of relaxation.
Resumo:
A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.
Resumo:
The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single ``do-it-all'' technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-mu s) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy.
Resumo:
The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the time‐domain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete time‐domain simulation, which makes use of the method of characteristics.
Resumo:
In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.