163 resultados para Third Congregational Church (Springfield, Mass.)
Resumo:
Abstract is not available.
Resumo:
On the basis of dodecahedral structure of a foam bed, a model to predict conversion in a foam bed contactor with mass transfer with chemical reaction has been developed. To verify the proposed model, experiments have been carried out in a semi-batch apparatus for the absorption of lean CO2 gas in a foam of sodium hydroxide solution. The proposed model predicts fairly well the experimentally found absorption values.
Resumo:
In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.
Resumo:
Creeping flow hydrodynamics combined with diffusion boundary layer equation are solved in conjunction with free-surface cell model to obtain a solution of the problem of convective transfer with surface reaction for flow parallel to an array of cylindrical pellets at high Peclet numbers and under fast and intermediate kinetics regimes. Expressions are derived for surface concentration, boundary layer thickness, mass flux and Sherwood number in terms of Damkoehler number, Peclet number and void fraction of the array. The theoretical results are evaluated numerically.
Resumo:
In this study, the Krylov-Bogoliubov-Mitropolskii-Popov asymptotic method is used to determine the transient response of third-order non-linear systems. Instead of averaging the non-linear functions over a cycle, they are expanded in ultraspherical polynomials and the constant term is retained. The resulting equations are solved to obtain the approximate solution. A numerical example is considered and the approximate solution is compared with the digital solution. The results show that there is good agreement between the two values.
Resumo:
In this paper, the transient response of a third-order non-linear system is obtained by first reducing the given third-order equation to three first-order equations by applying the method of variation of parameters. On the assumption that the variations of amplitude and phase are small, the functions are expanded in ultraspherical polynomials. The expansion is restricted to the constant term. The resulting equations are solved to obtain the response of the given third-order system. A numerical example is considered to illustrate the method. The results show that the agreement between the approximate and digital solution is good thus vindicating the approximation.
Resumo:
The paper studies the influence of vectored suction or injection on the flow and heat transfer at the stagnation point of a two-dimensional body (a cylinder) and an axisymmetric body (a sphere) with allowance for the effects of variable gas properties. The analysis is based on the boundary-layer equations in dimensionless form for the steady compressible fluid with variable properties in the stagnation region of a two-dimensional or an axisymmetric body with tangential and normal surface mass transfer under similarity requirements. It is shown that the variation of the density-viscosity product across the boundary layer has a strong effect on the skin friction and heat transfer. This gives rise to a point of inflection which can be removed by suction and by increasing the wall temperature. The skin friction and heat transfer are significantly affected by the pressure gradient parameter.
Application of Laplace transform technique to the solution of certain third-order non-linear systems
Resumo:
A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.
Resumo:
Abstract is not available.
Resumo:
The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.
Resumo:
The response of a third order non-linear system subjected to a pulse excitation is analysed. A transformation of the displacement variable is effected. The transformation function chosen is the solution of the linear problem subjected to the same pulse. With this transformation the equation of motion is brought into a form in which the method of variation of parameters is applicable for the solution of the problem. The method is applied to a single axis gyrostabilized platform subjected to an exponentially decaying pulse. The analytical results are compared with digital and analog computer solutions.