48 resultados para The near-poor
Resumo:
An asymptotic analysis of the two-dimensional turbulent near-wake flow behind a Rat plate with sharp trailing edge has been formulated, The feature that the near-wake, which is dominated by the mixing of the oncoming turbulent boundary layers retains, to a large extent, the memory of the turbulent structure of the upstream boundary layer has been exploited to develop the analysis. This analysis leads to two regions of the near-wake flow (the inner near-wake and the outer near-wake) for which the governing equations are derived. The matching conditions among these regions lead to a logarithmic variation in the normal direction in the overlapping region surrounding the inner near-wake. These features are validated by the available experimental data. Similarity solutions for the velocity distribution (which satisfy the required matching conditions) in the inner near-wake and outer near-wake regions have been obtained by making the appropriate eddy-viscosity assumptions, Uniformly valid solutions for velocity distribution have been constructed for the near-wake. The solutions show good agreement with available experimental data. (C) Elsevier, Paris.
Resumo:
The three-dimensional asymmetric turbulent near-Rake behind an infinitely swept wing with GAW(2) airfoil has been investigated at low speeds. The near-wake in the present study is asymmetric because the boundary layers on the top and bottom surfaces of the model develop under different streamwise pressure gradients. Distributions of mean velocity, three turbulent normal stresses, and two important Reynolds shear stresses have been measured using hot-wire anemometry. The profiles of mean velocity and Reynolds shear stress exhibit asymmetry near the trailing edge and seem to have become symmetric within a short distance of 6 trailing edge momentum thicknesses. Results of computation using K-epsilon turbulence model with a simple scheme to predict the near-wake behind the swept wing have also been presented and compared with the experimental data. The agreement of the predicted mean How development with the experiment is fair considering the simplicity of the scheme.
Resumo:
We describe here the characterization of the gene gp64 encoding the envelope fusion protein GP64 (open reading frame) ORF 105 from Bombyx mori nucleopolyhedrovirus (BmNPV). gp64 was transcribed from the early to late stages of infection and the transcripts were seen from 6 to 72 h post infection (hpi). The early transcripts initiated from a consensus CAGT motif while the late transcripts arose from three conserved TAAG motifs, all of which were located in the near upstream region of the coding sequence. Both early and late transcripts terminated at a run of T residues following the second polyadenylation signal located 31 nt downstream of the translation termination codon. BmGP64 protein was detectable from 6 hpi and was present in larger quantities throughout the infection process from 12 hpi, in BmNPV-infected BmN cells. The persistent presence of GP64 in BmN cells differed from the protein expression pattern of GP64 in Autographa californica multinucleocapsid nucleopolyhedrovirus infection, where the protein levels decreased significantly by late times (48 hpi). BmGP64 was located in the membrane and cytoplasm of the infected host cells and as a component of the budded virions. The production of infectious budded virus and the fusion activity were reduced when glycosylation of GP64 was inhibited. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.
Resumo:
This paper describes the near surface characteristics and vertical variations based on the observations made at 17.5degreesN and 89degreesE from ORV Sagar Kanya in the north Bay of Bengal during the Bay of Bengal Monsoon Experiment (BOBMEX) carried out in July-August 1999. BOBMEX captured both the active and weak phases of convection. SST remained above the convection threshold throughout the BOBMEX. While the response of the SST to atmospheric forcing was clearly observed, the response of the atmosphere to SST changes was not clear. SST decreased during periods of large scale precipitation, and increased during a weak phase of convection. It is shown that the latent heat flux at comparable wind speeds was about 25-50% lower over the Bay during BOBMEX compared to that over the Indian Ocean during other seasons and tropical west Pacific. On the other hand, the largest variations in the surface daily net heat flux are observed over the Bay during BOBMEX. SST predicted using observed surface fluxes showed that 1-D heat balance model works sometime but not always, and horizontal advection is important. The high resolution Vaisala radiosondes launched during BOBMEX could clearly bring out the changes in the vertical structure of the atmosphere between active and weak phases of convection. Convective Available Potential Energy of the surface air decreased,by 2-3 kJ kg(-1) following convection, and recovered in a time period of one or two days. The mid tropospheric relative humidity and water vapor content, and wind direction show the major changes between the active and weak phases of convection.
Resumo:
The severe wear of a near eutectic aluminium silicon alloy is explored using a range of electron microscopic, spectroscopic and diffraction techniques to identify the residually strained and unstrained regions, microcracks and oxidized regions in the subsurface. In severe wear the contact pressure exceeds the elastic shakedown limit. Under this condition the primary and eutectic silicon particles fragment drastically. The fragments are transported by the matrix as it undergoes incremental straining with each cyclic contact at the asperity level. The grains are refined from similar to 2000 nm in the bulk to 30 nm in the near surface region. A large reduction in the interparticle distance compared with that for a milder stage of wear gives rise to high strain gradients which contribute to an enhancement of the dislocation density. The resulting regions of very high strain in the boundaries of the recrystallized grains as well as within the subgrains lead to the formation of microvoidskracks. This is accompanied by the formation of brittle oxides at these subsurface interfaces due to enhanced diffusion of oxygen. We believe that the abundance of such microcracks in the near surface region, primed by severe plastic deformation, is what distinguishes a severe wear regime from mild wear. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Based on the an earlier CFD analysis of the performance of the gas-dynamically controlled laser cavity [1]it was found that there is possibility of optimizing the geometry of the diffuser that can bring about reductions in both size and cost of the system by examining the critical dimensional requirements of the diffuser. Consequently,an extensive CFD analysis has been carried out for a range of diffuser configurations by simulating the supersonic flow through the arrangement including the laser cavity driven by a bank of converging – diverging nozzles and the diffuser. The numerical investigations with 3D-RANS code are carried out to capture the flow patterns through diffusers past the cavity that has multiple supersonic jet interactions with shocks leading to complex flow pattern. Varying length of the diffuser plates is made to be the basic parameter of the study. The analysis reveals that the pressure recovery pattern during the flow through the diffuser from the simulation, being critical for the performance of the laser device shows its dependence on the diffuser length is weaker beyond a critical lower limit and this evaluation of this limit would provide a design guideline for a more efficient system configuration.The observation based on the parametric study shows that the pressure recovery transients in the near vicinity of the cavity is not affected for the reduction in the length of the diffuser plates up to its 10% of the initial size, indicating the design in the first configuration that was tested experimentally has a large factor of margin. The flow stability in the laser cavity is found to be unaffected since a strong and stable shock is located at the leading edge of the diffuser plates while the downstream shock and flow patterns are changed, as one would expect. Results of the study for the different lengths of diffusers in the range of 10% to its full length are presented, keeping the experimentally tested configuration used in the earlier study [1] as the reference length. The conclusions drawn from the analysis is found to be of significance since it provides new design considerations based on the understanding of the intricacies of the flow, allowing for a hardware optimization that can lead to substantial size reduction of the device with no loss of performance.
Resumo:
We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of line plumes measured from these planforms, in a six decade range of Rayleigh numbers (10(5) < Ra < 10(11)) and at three Prandtl numbers (Pr = 0.7, 5.2, 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of near-wall plumes on horizontal surfaces in turbulent convection. The plume length per unit area (L(p)/A), made dimensionless by the near-wall length scale in turbulent convection (Z(w)), remains constant for a given fluid. The Nusselt number is shown to be directly proportional to L(p)H/A for a given fluid layer of height H. The increase in Pr has a weak influence in decreasing L(p)/A. These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.
Resumo:
Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.
Resumo:
Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Optical emission from emitters strongly interacting among themselves and also with other polarizable matter in close proximity has been approximated by emission from independent emitters. This is primarily due to our inability to evaluate the self-energy matrices and radiative properties of the collective eigenstates of emitters in heterogeneous ensembles. A method to evaluate self-energy matrices that is not limited by the geometry and material composition is presented to understand and exploit such collective excitations. Numerical evaluations using this method are used to highlight the significant differences between independent and the collective modes of emission in nanoscale heterostructures. A set of N Lorentz emitters and other polarizable entities is used to represent the coupled system of a generalized geometry in a volume integral approach. Closed form relations between the Green tensors of entity pairs in free space and their correspondents in a heterostructure are derived concisely. This is made possible for general geometries because the global matrices consisting of all free-space Green dyads are subject to conservation laws. The self-energy matrix can then be assembled using the evaluated Green tensors of the heterostructure, but a decomposition of its components into their radiative and nonradiative decay contributions is nontrivial. The relations to compute the observables of the eigenstates (such as quantum efficiency, power/energy of emission, radiative and nonradiative decay rates) are presented. A note on extension of this method to collective excitations, which also includes strong interactions with a surface in the near-field, is added. (C) 2014 Optical Society of America
Resumo:
We develop new techniques to efficiently evaluate heat kernel coefficients for the Laplacian in the short-time expansion on spheres and hyperboloids with conical singularities. We then apply these techniques to explicitly compute the logarithmic contribution to black hole entropy from an N = 4 vector multiplet about a Z(N) orbifold of the near-horizon geometry of quarter-BPS black holes in N = 4 supergravity. We find that this vanishes, matching perfectly with the prediction from the microstate counting. We also discuss possible generalisations of our heat kernel results to higher-spin fields over ZN orbifolds of higher-dimensional spheres and hyperboloids.