54 resultados para Tellurite glass Erbium Luminescence quantum efficiency Thermal lens spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection efficiency of a gaseous photomultiplier depends on the photocathode quantum efficiency and the extraction efficiency of photoelectrons into the gas. In this paper we have studied the performance of an UV photon detector with P10 gas in which the extraction efficiency can reach values near to those in vacuum operated devices. Simulations have been done to compare the percentage of photoelectrons backscattered in P10 gas as well as in the widely used neon-based gas mixture. The performance study has been carried out using a single stage thick gas electron multiplier (THGEM). The electron pulses and electron spectrum are recorded under various operating conditions. Secondary effects prevailing in UV photon detectors like photon feedback are discussed and its effect on the electron spectrum under different operating conditions is analyzed. (C) 2014 Chinese Laser Press

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum ensembles form easily accessible architectures for studying various phenomena in quantum physics, quantum information science and spectroscopy. Here we review some recent protocols for measurements in quantum ensembles by utilizing ancillary systems. We also illustrate these protocols experimentally via nuclear magnetic resonance techniques. In particular, we shall review noninvasive measurements, extracting expectation values of various operators, characterizations of quantum states and quantum processes, and finally quantum noise engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the temperature-dependent photoluminescence (PL) properties of polymeric graphite-like carbon nitride (g-C3N4) and a methodology for the determination of quantum efficiency along with the activation energy. The PL is shown to originate from three different pathways of transitions: sigma*-LP, pi*-LP, and pi*-pi, respectively. The overall activation energy is found to be similar to 73.58 meV which is much lower than the exciton binding energy reported theoretically but ideal for highly sensitive wide-range temperature sensing. The quantum yield derived from the PL data is 23.3%, whereas the absolute quantum yield is 5.3%. We propose that the temperature-dependent PL can be exploited for the evaluation of the temperature dependency of quantum yield as well as for temperature sensing. Our analysis further indicates that g-C3N4 is well-suited for wide-range temperature sensing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cu2SnS3 thin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm-1 corroborate its application as a photoactive material. The visible and infrared (IR) photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 mu A to a current of 1.78 mu A at 1.05 suns and 8.7 mu A under 477.7 mW/cm(2) IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 x 10(10) Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 x 10(10) Jones respectively at 477.7 mW/cm(2) IR illumination. The transient photoresponse was measured both for visible and IR illuminations. (C) 2016 Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and synthesis is reported of 7-(9H-carbazol-9-yl)-4-methylcoumarin (Cz-Cm), comprising a carbazole donor moiety and a 4-methylcoumarin acceptor unit, for use in a blue organic light-emitting diode. A detailed solid state, theoretical and spectroscopic study was performed to understand the structure-property relationships. The material exhibits deep-blue emission and high photoluminescence quantum yield both in solution and in a doped matrix. A deep-blue electroluminescence emission at 430nm, a maximum brightness of 292cdm(-2) and an external quantum efficiency of 0.4% was achieved with a device configured as follows: ITO/NPD (30nm)/TCTA (20nm)/CzSi(10nm)/10wt% Cz-Cm:DPEPO (10nm)/TPBI (30nm)/LiF (1nm)/Al ITO=indium tin oxide, NPD=N,N-di(1-naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine, TCTA=tris(4-carbazoyl-9-ylphenyl)amine, CzSi=9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, DPEPO=bis2-(diphenylphosphino)phenyl]ether oxide, TPBI=1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal desorption spectroscopy and nanoindentation techniques were employed to elucidate the key differences in the hydrogen (H) charging methods (electrochemical versus gaseous) and their consequences on the mechanical response of a low carbon steel. While electrochemical charging enhances the hardness, gaseous charging reduces it. This contrasting behavior is rationalized in terms of the dependency of the strength on the absorbed amount of H during charging and the H concentration gradient in the specimen. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We show that the operation and the output power of a quantum heat engine that converts incoherent thermal energy into coherent cavity photons can be optimized by manipulating quantum coherences. The gain or loss in the efficiency at maximum power depends on the details of the output power optimization. Quantum effects tend to enhance the output power and the efficiency as the photon occupation in the cavity is decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,agr, are measured using a three-terminal capacitance bridge. Theagr-values show a sharp maximum near the glass transition temperature,T g. The ultrasonic velocities also show a large temperature derivative, dV/dT nearT g. The data are discussed in terms of existing theories of the glass transition. The continuous change inagr shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearT g. The ultrasonic velocities and dV/dT have contributions arising from this deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,agr, are measured using a three-terminal capacitance bridge. Theagr-values show a sharp maximum near the glass transition temperature,T g. The ultrasonic velocities also show a large temperature derivative, dV/dT nearT g. The data are discussed in terms of existing theories of the glass transition. The continuous change inagr shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearT g. The ultrasonic velocities and dV/dT have contributions arising from this deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derive the thermal correlators for twisted quantum fields on noncommutative spacetime. We show that the thermal expectation value of the number operator is same as in commutative spacetime, but that higher correlators are sensitive to the noncommutativity parameters phi(mu nu).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper is based on a study to develop carbon-glass epoxy hybrid composites with desirable thermal properties for applications at cryogenic temperatures. It analyzes the coefficient of thermal expansion of carbon-epoxy and glass-epoxy composite materials and compares it with the properties of carbon-glass epoxy hybrid composites in the temperature range 300 K to 125K. Urethane modified epoxy matrix system is used to make the composite specimens suitable for use even for temperatures as low as 20K. It is noted that the lay-up with 80% of carbon fibers in the total volume fraction of fibers oriented at 30 degrees and 20% of glass fibers oriented at 0 degrees yields near to zero coefficient of thermal expansion as the temperature is lowered from ambient to 125 K. (c) 2010 Elsevier Ltd. All rights reserved.