108 resultados para Supramolecular architecture
Resumo:
Massively parallel SIMD computing is applied to obtain an order of magnitude improvement in the executional speed of an important algorithm in VLSI design automation. The physical design of a VLSI circuit involves logic module placement as a subtask. The paper is concerned with accelerating the well known Min-cut placement technique for logic cell placement. The inherent parallelism of the Min-cut algorithm is identified, and it is shown that a parallel machine based on the efficient execution of the placement procedure.
Resumo:
A new fault-tolerant multi-transputer architecture capable of tolerating failure of any one component in the system is described. In the proposed architecture the processing nodes are automatically reconfigured in the event of a fault and the computations continue from the stage where the fault occurred. The process of reconfiguration is transparent to the user, and the identity of the failed component is communicated to the user along with the results of computations. Parallel solution of a typical engineering problem involving solution of Laplace's equation by the boundary element method has been implemented. The performance of the architecture in the event of faults has been investigated.
Resumo:
Physalis mottle tymovirus (previously named belladonna mottle virus, Iowa strain) RNA was cross-linked to its coat protein by exposure of the intact virus to ultraviolet light. The site of cross-linking of the coat protein with the RNA was identified as Lys-10 by sequencing the oligonucleotide-linked tryptic peptide obtained upon HPLC separation subsequent to enzymetic digestion of the cross-linked and dissociated virus. Three monoclonal antibodies PA3B2, PB5G9, and PF12C9, obtained using denatured coat protein as antigen, cross-reacted effectively with the intact virus indicating that the epitopes recognized by these monoclonals are on the surface of the virus. Using the peptides generated by digestion with CNBr, clostripain, V-8 protease, or trypsin and a recombinant protein lacking the N-terminal 21 residues expressed from a cDNA clone, it was shown that PA3B2 recognizes the sequence 22-36 on the coat protein while PB5G9 and PF12C9 recognize region 75-110. These results suggest that Lys-10 is one of the specific sites through which the RNA interacts in the intact virus. The polypeptide segment (region 22-36) following this buried portion as well as the epitope within the region 75-110 are exposed in the intact virus. These observations are consistent with the canonical β-barrel structure observed in certain other plant viruses.
Resumo:
The modularity of the supramolecular synthon is used to obtain transferability of charge density derived multipolar parameters for structural fragments, thus creating an opportunity to derive charge density maps for new compounds. On the basis of high resolution X-ray diffraction data obtained at 100 K for three compounds methoxybenzoic acid, acetanilide, and 4-methyl-benzoic acid, multipole parameters for O-H center dot center dot center dot O carboxylic acid dimer and N-H center dot center dot center dot O amide infinite chain synthon fragments have been derived. The robustness associated with these supramolecular synthons has been used to model charge density derived multipolar parameters for 4-(acetylamino)benzoic acid and 4-methylacetanilide. The study provides pointers to the design and fabrication of a synthon library of high resolution X-ray diffraction data sets. It has been demonstrated that the derived charge density features can be exploited in both intra- and intermolecular space for any organic compound based on transferability of multipole parameters. The supramolecular synthon based fragments approach (SBFA) has been compared with experimental charge density data to check the reliability of use of this methodology for transferring charge density derived multipole parameters.
Resumo:
High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper present an area optimized architecture for Intra prediction, for H.264 decoding at HDTV resolution with a target of achieving 60 fps. The architecture was validated on Virtex-5 FPGA based platform. The architecture achieves a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.
Resumo:
Molecular self-assembly is of key importance for the rational design of advanced materials. To investigate the causal relation between molecular structure and the consequent self-assembled microstructure, self-assembled tubules of diacetylenic lipids were studied. Circular-dichroism studies give experimental evidence that the formation of tubules is driven by chiral molecular packing, in agreement with recent theories of tubules. On the basis of these results, a molecular mechanism for the formation of tubules is proposed.
Resumo:
Sesbania mosaic virus (SMV) is a plant virus that infects Sesbania grandiflora plants in Andhra Pradesh, India. The amino acid sequence of the coat protein of SMV was determined using purified peptides generated by cleavage with trypsin, chymotrypsin, V8 protease and clostripain. The 230 residues so far determined were compared to the corresponding residues of southern bean mosaic virus (SBMV), the type member of sobemoviruses. The overall identity between the sequences is 61.7%. The amino terminal 64 residues, which constitute an independent domain (R-domain) known to interact with RNA, are conserved to a lower extent (52.5%). Comparison of the positively charged residues in this domain suggests that the RNA-protein interactions are considerably weaker in SMV. The residues that constitute the major domain of the coat protein, the surface domain (S-domain, residues 65-260), are better conserved (66.5%). The positively charged residues of this domain that face the nucleic acid are well conserved. The longest conserved stretch of residues (131-142) corresponds to the loop involved in intersubunit interactions between subunits related by the quasi 3-fold symmetry. A unique cation binding site located on the quasi 3-fold axis contributes to the stability of SMV. These differences are reflected in the increased stability of the SMV coat protein and its ability to be reconstituted with RNA at pH 7.5. A major epitope was identified using monoclonal antibodies to SMV in the segment 201-223 which contains an exposed helix in the capsid structure. This region is highly conserved between SMV and SBMV (70%) suggesting that it could represent the site of an important function such as vector recognition.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Resumo:
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.
Resumo:
Investigations of the pore expansion in mesoporous silica in the presence of n-alkanes suggest a cooperative organization of the surfactant and alkane molecules, involving additivity of chain lengths.
Resumo:
We describe the design of a directory-based shared memory architecture on a hierarchical network of hypercubes. The distributed directory scheme comprises two separate hierarchical networks for handling cache requests and transfers. Further, the scheme assumes a single address space and each processing element views the entire network as contiguous memory space. The size of individual directories stored at each node of the network remains constant throughout the network. Although the size of the directory increases with the network size, the architecture is scalable. The results of the analytical studies demonstrate superior performance characteristics of our scheme compared with those of other schemes.
Resumo:
Monoclonal antibodies have been used as probes to study the architecture of several plant viruses over the past decade. These studies complement the information obtained through X-ray crystallography and help in delineating epitopes on the surface of the virus. The monoclonal antibodies that recognize distinct epitopes also aid in unravelling the mechanisms of assembly/disassembly of virus particles. Group-specific and strain-specific monoclonal antibodies are widely used in the classification of viruses. The significant developments made in this emerging area are reviewed here with specific examples.
Resumo:
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.