122 resultados para Suppression articulatoire
Resumo:
Here, we present the results of temperature dependent dielectric studies on chemical solution processed Zr-doped BiFeO3 (BFO) thin films deposited on Pt/Si substrates. We find that in contrast to the undoped BFO films, Zr doping at Fe-site suppresses the low frequency dielectric relaxation originating from the grain boundaries, attributed to the increased dipolar rigidity due to stronger Zr-O bonds. Temperature dependent dc conductivity obtained from impedance and modulus analyses shows two distinct conduction processes occurring inside the grains. At temperature below similar to 423K, conductivity is nearly temperature independent, while in the high temperature regime (above similar to 423K), conduction is governed by the long range movement of oxygen vacancies with an activation energy of similar to 1eV. (C) 2014 AIP Publishing LLC.
Resumo:
Self-induced internal boiling in burning functional droplets has been observed to induce severe bulk shape oscillations in droplets with characteristic bubble ejection events that corrugate the droplet surface. Such bubble-droplet interactions are characterized by a distinct regime of a single bubble growing inside the droplet where evaporative Darrieus-Landau instability occurs at the bubble-droplet interface. In this regime the bubble-droplet system behaves as a self-excited coupled oscillator. In this study, we report the external flame-acoustic interaction with bubbles inside the droplet resulting in controlled droplet deformation. In particular, by exciting the droplet flame in a critical, responsive frequency range (80 Hz <= f(p) <= 120 Hz) the droplet deformation cycle could be altered through suppression of these self-excited instabilities and intensity/frequency of bubble ejection events. This selective acoustic tuning also enabled the control of bubble dynamics, bulk droplet-shape distortion and the final precipitate morphology even in burning nanoparticle laden droplets. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
In this paper, a 5th and 7th harmonic suppression technique for a 2-level VSI fed IM drive, by using capacitive filtering is proposed. A capacitor fed 2-level inverter is used on an open-end winding induction motor to suppress all 5th and 7th order harmonics. A PWM scheme that maintains the capacitor voltage, while suppressing the harmonics is also proposed. The proposed scheme is valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter.
Resumo:
Suppression of the aggregation of proteins has tremendous implications in biology and medicine. In the pharmaceuticals industry, aggregation of therapeutically important proteins and peptides while stored, reduces the efficacy and promptness of action leading to, in many instances, intoxication of the patient by the aggregate. Here we report the effect of gold nanoparticles (Au-NPs) in preventing the thermal and chemical aggregation of two unrelated proteins of different size, alcohol dehydrogenase (ADH, 84 kDa) and insulin (6 kDa), respectively, in physiological pH. Our principal observation is that there is a significant reduction (up to 95%) in the extent of aggregation of ADH and insulin in the presence of gold nanoparticles (Au-NPs). Aggregation of these proteins at micromolar concentration is prevented using nanomolar or less amounts of gold nanoparticles which is remarkable since chaperones which prevent such aggregation in vivo are required in micromolar quantity. The prevention of aggregation of these two different proteins under two different denaturing environments has established the role of Au-NPs as a protein aggregation prevention agent. The extent of prevention increases rapidly with the increase in the size of the gold nanoparticles. Protein molecules get physisorbed on the gold nanoparticle surface and thus become inaccessible by the denaturing agent in solution. This adsorption of proteins on AuNPs has been established by a variety of techniques and assays.
Resumo:
This paper proposes a technique to suppress low-order harmonics for an open-end winding induction motor drive for a full modulation range. One side of the machine is connected to a main inverter with a dc power supply, whereas the other inverter is connected to a capacitor from the other side. Harmonic suppression (with complete elimination of fifth- and seventh-order harmonics) is achieved by realizing dodecagonal space vectors using a combined pulsewidth modulation (PWM) control for the two inverters. The floating capacitor voltage is inherently controlled during the PWM operation. The proposed PWM technique is shown to be valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter. Experimental results have been presented to validate the proposed technique.
Resumo:
We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].
Resumo:
We have designed a novel coupled transcriptional construct wherein Escherichia coil uracil DNA glycosylase (UDC:) and Bacillus subtilis phage PBS-2 encoded uracil DNA glycosylase inhibitor protein (Ugi) genes were cloned in tandem, downstream of an inducible promoter (P-trc). Use of this bicistronic operon has allowed purification of large amounts of UDG-Ugi complex formed in vivo. The system has also been exploited for purification of large amounts of Ugi. While establishing the expression system, one of the constructs showed detectable suppression of UAG termination codon and resulted in accumulation of a minor population of a putative readthrough polypeptide cor responding to UDG. We discuss the likely occurrence of such a phenomenon in overproduction of other recombinant proteins. Finally, the usefulness of the operon construct in convenient mutational analysis to study the mechanism of UDG-Ugi interaction is also discussed.
Resumo:
Good quality single crystals of copper metagermanite, CuGeO3, are grown by flux technique. Growth is carried out at relatively low temperatures by using Bi2O3 along with CuO in an optimal flux ratio. Besides rendering the procedure simple, lower growth temperature reduces growth defect concentration. Single crystals of Cu1 - xCoxGeO3 and CuGe1 - yGayO3 are grown by the same method for different values of x and y to investigate the influence of in-chain and off-chain doping on spin-Peierls (SP) transition. Change in color, morphology and surface features as a result of doping are briefly discussed. Spin-Peierls transition of these crystals is studied by susceptibility measurements on a commercial SQUID magnetometer. Cationic substitution resulted in reduction of spin-Peierls transition temperature (T-SP) of CuGeO3. Substitution of magnetic impurity cobalt in-chain site caused more pronounced effects such as suppression of SP phase.
Resumo:
Adult male bonnet monkeys exhibit nychthemeral rhythms in testosterone (T) secretion but the precise role of this heightened level of T secretion in regulating spermatogenesis is not known. Intranasal administration of microdoses (500 mu g or 250 mu g/day) of Norethisterone (IN-NET) to adult monkeys (n = 6) at 1600 h each day selectively and completely suppressed the nocturnal surge levels of serum T. Concomitant with this was a significant reduction (P<0.01) in serum LH but not FSH levels. DNA flow cytometric analysis of testicular biopsy tissue showed by week 10 of IN-NET treatment an arrest in meiotic transformation of primary spermatocytes (4C) to round/elongate (1C/HC) spermatids and by week 20 there was a complete absence of 4C, 1C and HC cells (with a relative accumulation in 2C cells). The accumulated meiotic (4C) cells at week 10 showed an increase (>80%, P<0.01) in coefficient of variation and a decrease in intensity of DNA-bound ethidium bromide fluorescence, parameters characteristic of degenerating 'apoptotic' subpopulation of germ cells. While two monkeys exhibited acute oligozoospermia 4 became azoospermic by 20 weeks of IN-NET treatment. A complete, qualitative reversal in the regressive changes in spermatogenesis and near-normal sperm output were apparent at the end of a 20-week recovery phase. These data demonstrate that prolonged, selective suppression of nocturnal surge levels of serum T secretion exerts a primary effect on meiosis in spermatogenesis leading to oligo/azoospermic status in adult bonnet monkeys.
Resumo:
Background Vascular endothelial growth factor (VEGF) is known to play a major role in angiogenesis. A soluble form of Flt-1, a VEGF receptor, is potentially useful as an antagonist of VEGF, and accumulating evidence suggests the applicability of sFlt-1 in tumor suppression. In the present study, we have developed and tested strategies targeted specifically to VEGF for the treatment of ascites formation.Methods As an initial strategy, we produced recombinant sFLT-1 in the baculovirus expression system and used it as a trap to sequester VEGF in the murine ascites carcinoma model. The effect of the treatment on the weight of the animal, cell number, ascites volume and proliferating endothelial cells was studied. The second strategy involved, producing Ehrlich ascites tumor (EAT) cells stably transfected with vectors carrying cDNA encoding truncated form of Flt-1 and using these cells to inhibit ascites tumors in a nude mouse model. Results The sFLT-1 produced by the baculovirus system showed potent antiangiogenic activity as assessed by rat cornea and tube formation assay. sFLT-1 treatment resulted in reduced peritoneal angiogenesis with a concomitant decrease in tumor cell number, volume of ascites, amount of free VEGF and the number of invasive tumor cells as assayed by CD31 staining. EAT cells stably transfected with truncated form of Flt-1 also effectively reduced the tumor burden in nude mice transplanted with these cells, and demonstrated a reduction in ascites formation and peritoneal angiogenesis. Conclusions The inhibition of peritoneal angiogenesis and tumor growth by sequestering VEGF with either sFlt-1 gene expression by recombinant EAT cells or by direct sFLT-1 protein therapy is shown to comprise a potential therapy. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.
Resumo:
X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.
Resumo:
We present low-frequency electrical resistance fluctuations, or noise, in graphene-based field-effect devices with varying number of layers. In single-layer devices, the noise magnitude decreases with increasing carrier density, which behaved oppositely in the devices with two or larger number of layers accompanied by a suppression in noise magnitude by more than two orders in the latter case. This behavior can be explained from the influence of external electric field on graphene band structure, and provides a simple transport-based route to isolate single-layer graphene devices from those with multiple layers. ©2009 American Institute of Physics
Resumo:
In higher primates, increased circulating follicle-stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P-4)secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern Of P-4 secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3 +/- 2 vs. 27.3 +/- 3 pg/mL), and a 2- to 3-fold rise in circulating FSH levels by 24 hr (0.20 +/- 0.02 vs. 0.53 +/- 0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 mu g/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P-4 concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase. Am. J. Primatol. 71:817-824, 2009.
Resumo:
The temperature-sensitive prp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperature-sensitive (ts) prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic to prp21-1. This suppressor, prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that of prp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in the prp24-1 strain. Genetic analysis of the suppressor showed that prp21-2 is not a bypass suppressor of prp24-1. The suppression of prp24-1 by prp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2-U6 snRNA interactions.