109 resultados para Stochastic Monotony


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study stochastic games with countable state space, compact action spaces, and limiting average payoff. ForN-person games, the existence of an equilibrium in stationary strategies is established under a certain Liapunov stability condition. For two-person zero-sum games, the existence of a value and optimal strategies for both players are established under the same stability condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Columns which have stochastically distributed Young's modulus and mass density and are subjected to deterministic periodic axial loadings are considered. The general case of a column supported on a Winkler elastic foundation of random stiffness and also on discrete elastic supports which are also random is considered. Material property fluctuations are modeled as independent one-dimensional univariate homogeneous real random fields in space. In addition to autocorrelation functions or their equivalent power spectral density functions, the input random fields are characterized by scale of fluctuations or variance functions for their second order properties. The foundation stiffness coefficient and the stiffnesses of discrete elastic supports are treated to constitute independent random variables. The system equations of boundary frequencies are obtained using Bolotin's method for deterministic systems. Stochastic FEM is used to obtain the discrete system with random as well as periodic coefficients. Statistical properties of boundary frequencies are derived in terms of input parameter statistics. A complete covariance structure is obtained. The equations developed are illustrated using a numerical example employing a practical correlation structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A von Mises truss with stochastically varying material properties is investigated for snapthrough instability. The variability of the snap-through load is calculated analytically as a function of the material property variability represented as a stochastic process. The bounds are established which are independent of the knowledge of the complete description of correlation structure which is seldom possible using the experimental data. Two processes are considered to represent the material property variability and the results are presented graphically. Ein von Mises Fachwerk mit stochastisch verteilten Materialeigenschaften wird bezüglich der Durchschlagsinstabilität untersucht. Die Spannbreite der Durchschlagslast wird analytisch als Funktion der Spannbreite der Materialeigenschaften berechnet, die stochastisch verteilt angenommen werden. Eine explizite Gesamtbeschreibung der Struktur ist bei Benutzung experimenteller Daten selten möglich. Deshalb werden Grenzen für die Durchschlagskraft entwickelt, die von der Kenntnis dieser Gesamtbeschreibung unabhängig sind. Zwei Grenzfälle werden betrachtet, um die Spannbreite der Materialeigenschaften darzustellen. Die Ergebnisse werden grafisch dargestellt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach based on occupation measures is introduced for studying stochastic differential games. For two-person zero-sum games, the existence of values and optimal strategies for both players is established for various payoff criteria. ForN-person games, the existence of equilibria in Markov strategies is established for various cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts in the past to model the irregularities of the solar cycle (such as the Maunder minimum) were based on studies of the nonlinear feedback of magnetic fields on the dynamo source terms. Since the alpha-coefficient is obtained by averaging over the turbulence, it is expected to have stochastic fluctuations, and we show that these fluctuations can explain the irregularities of the solar cycle in a more satisfactory way. We solve the dynamo equations in a slab with a single mode, taking the alpha-coefficient to be constant in space but fluctuating stochastically in time with some given amplitude and given correlation time. The same level of percentile fluctuations (about 10 %) produces no effect on an alpha-omega dynamo, but makes an alpha-2 dynamo completely chaotic. The level of irregularities in an alpha-2-omega dynamo qualitatively agrees with the solar behavior, reinforcing the conclusion of Choudhuri (1990a) that the solar dynamo is of the alpha-2-omega-type. The irregularities are found to increase on increasing either the amplitude or the correlation time of the stochastic fluctuations. The alpha-quenching mechanism tends to make the system stable against the irregularities and hence it is inferred that the alpha-quenching should not be too strong so that the irregularities are not completely suppressed. We also present a simple-minded analysis to understand why the stochastic fluctuations in the alpha-omega, alpha-2-omega and alpha-2 regimes have such different outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.