35 resultados para Steven and Dorothea Green Critics Lecture Series
Resumo:
Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.
Resumo:
Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100EJ: high agreement; 100-300EJ: medium agreement; above 300EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245EJyr(-1) to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large-scale deployment (>200EJ), together with BECCS, could help to keep global warming below 2 degrees degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.
Resumo:
Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The ambiguous behavior of metal-graphene interface has been addressed in this paper using density functional theory and nonequilibrium Green's function formalism. For the first time, the fundamental chemistry of metal-graphene interface, in particular role of sp-hybridized and sp(2)-hybridized carbon atoms, has been emphasized and discussed in detail in this paper. It was discovered that the sp-hybridized sites at the edge of a graphene monolayer contribute to 40% of current conduction when compared with sp(2)-hybridized atom sites in the graphene-metal overlap region. Moreover, we highlighted the insignificance of an additional metal layer, i.e., sandwiched contact, due to lacking sp-hybridized carbon sites. A fundamental way of defining the contact resistance, while keeping chemical bonding in mind, has been proposed. The bonding insight has been further used to propose the novel ways of interfacing metal with graphene, which results in a 40% reduction in contact resistance.