52 resultados para State Laser Arrays


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of Ti62.5Si37.5 composition were deposited by the pulsed-laser ablation technique on single-crystal Nad substrates at room temperature and on ′single-crystal′ superalloy substrates at elevated temperatures. Both vapour and liquid droplets generated by pulsed-laser ablation of the target become quenched on the substrate. Amorphization had taken place in the process of quenching of vapour-plasma as well as small liquid droplets on NaCl substrates at room temperature. In addition to the formation of Ti5Si3, a metastable fcc phase (a 0 = 0.433 nm) also forms in micron-sized large droplets as well as in the medium-sized submicron droplets. The same metastable fcc phase nucleates during deposition from the vapour state at 500°C and at 600°C on a superalloy substrate as well as during crystallization of the amorphous phase. The evolution of the metastable fcc phase in the Ti-Si system during non-equilibrium processing is reported for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by experiments on Josephson junction arrays, and cold atoms in an optical lattice in a synthetic magnetic field, we study the ``fully frustrated'' Bose-Hubbard model with half a magnetic flux quantum per plaquette. We obtain the phase diagram of this model on a two-leg ladder at integer filling via the density matrix renormalization group approach, complemented by Monte Carlo simulations on an effective classical XY model. The ground state at intermediate correlations is consistently shown to be a chiral Mott insulator (CMI) with a gap to all excitations and staggered loop currents which spontaneously break time-reversal symmetry. We characterize the CMI state as a vortex supersolid or an indirect exciton condensate, and discuss various experimental implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated megaampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (10(18)-10(19)) W/cm(2) was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of defects on laser-excited photoluminescence of various ZnO nanostructures has been investigated. The study shows that defects present in ZnO nanostructures, specially Zn-related defects play a crucial role in determining the laser-excited photoluminescence intensity (LEI). ZnO nanoparticles as well as nanorods (NR) annealed in oxygen atmosphere exhibit remarkable enhancement in LEI. A similar enhancement is also shown by Al-doped ZnO NR. © 2012 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of defects on laser-excited photoluminescence of various ZnO nanostructures has been investigated. The study shows that defects present in ZnO nanostructures, specially Zn-related defects play a crucial role in determining the laser-excited photoluminescence intensity (LEI). ZnO nanoparticles as well as nanorods (NR) annealed in oxygen atmosphere exhibit remarkable enhancement in LEI. A similar enhancement is also shown by Al-doped ZnO NR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent past conventional Spin Valve (SV) structures are gaining growing interest over Tunneling Magneto-resistance (TMR) because of its preference due to low RA product in hard disc read head sensor applications. Pulsed Laser Deposited (PLD) SV and Pseudo Spin Valve (PSV) samples are grown at room temperature with moderately high MR values using simple FM/NM/FM/AFM structure. Although PLD is not a popular technique to grow metallic SVs because of expected large intermixing of the interfaces, particulate formation, still by suitably adjusting the deposition parameters we could get exchange bias (EB) as well as 2-3% MR of these SVs in the Current In Plane (CIP) geometry. Exchange Bias, which sets in even without applying magnetic field during deposition observed by using SQUID magnetometry as well as by MR measurements. Angular variation of the MR reveals four-fold anisotropy of the hard layer (Co) which becomes two-fold in presence of an adjacent AFM layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present article reports a facile method for preparing the vertically-aligned 1D arrays of a new type of type II n-n TiO2/ZnO core/shell nano-heterostructures by growing the nano-shell of ZnO on the electrochemically fabricated TiO2 nanotubes core for visible light driven photoelectrochemical applications. The strong interfacial interaction at the type II heterojunction leads to an effective interfacial charge separation and charge transport. The presence of various defects such as surface states, interface states and other defects in the nano-heterostructure enable it for improved visible light photoelectrochemical performance. The presence of such defects has also been confirmed by the UV-vis absorption, cathodoluminescence, and crystallographic studies. The TiO2/ZnO core/shell nano-heterostructures exhibit strong green luminescence due to the defect transitions. The TiO2/ZnO core/shell nano-heterostructures photo-electrode show significant enhancement of visible light absorption and it provides a photocurrent density of 0.7 mA cm(-2) at 1 V vs. Ag/AgCl, which is almost 2.7 times that of the TiO2/ZnO core/shell nano-heterostructures under dark conditions. The electrochemical impedance spectroscopy results demonstrate that the substantially improved photoelectrochemical and photo-switching performance of the nano-heterostructures photo-anode is because of the enhancement of interfacial charge transfer and the increase in the charge carrier density caused by the incorporation of the ZnO nano-shell on TiO2 nanotube core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report the synthesis of TiO2/BiFeO3 nano-heterostnicture (NH) arrays by anchoring BiFeO3 (BFO) particles on on TiO2 nanotube surface and investigate their pseudocapacitive and photoelectrochemical properties considering their applications in green energy fields. The unique TiO2/BFO NHs have been demonstrated both as energy conversion and storage materials. The capacitive behavior of the NHs has been found to be significantly higher than that of the pristine TiO2 NTs, which is mainly due to the anchoring of redox active BFO nanoparticles. A specific capacitance of about 440 F g(-1) has been achieved for this NHs at a current density of 1.1 A g(-1) with similar to 80% capacity retention at a current density of 2.5 A g(-1). The NHs also exhibit high energy and power performance (energy density of 46.5 Wh kg(-1) and power density of 1.2 kW kg(-1) at a current density of 2.5 A g(-1)) with moderate cycling stability (92% capacity retention after 1200 cycles). Photoelectrochemical investigation reveals that the photocurrent density of the NHs is almost 480% higher than the corresponding dark current and it shows significantly improved photoswitching performance as compared to pure TiO2 nanotubes, which has been demonstrated based the interfacial type-II band alignment between TiO2 and BFO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SecB is a cytosolic, tetrameric chaperone of Escherichia coli which maintains precursor proteins in a translocation competent state. We have investigated the effect of SecB on the refolding kinetics of the small protein barstar in I M guanidine hydrochloride at pH 7.0 and 25 degrees C using fluorescence spectroscopy. We show that SecB does not bind either the native or the unfolded states of barstar but binds to a late near-native intermediate along the folding pathway. For barstar, polypeptide collapse and formation of a hydrophobic surface are required for binding to SecB. SecB does not change the apparent rate constant of barstar refolding. The kinetic data for SecB binding to barstar are not consistent with simple kinetic partitioning models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superconducting state of the cuprates in the presence of a magnetic field has been investigated very actively in the past few years through measurements of electrical and thermal transport, ac conductivity, specific heat, and other quantities. The observed behavior is not well understood; it probes the nature of quasiparticies, vortices, and their interactions in a superconductor with nodes in the pair amplitude. We summarize here experimental results and our attempts to understand the phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanoparticles exhibit size dependent optical and electrical properties. We report here the photocurrent and I-V characteristic studies of CdS nanoparticle devices. A sizable short circuit photocurrent was observed in the detection range governed by the size of the clusters. We speculate on the mechanisms leading to the photocurrent and emission in these nanometer scale systems.