35 resultados para Stars: massive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We model the shape and density profile of the dark matter halo of the low surface brightness, superthin galaxy UGC 7321, using the observed rotation curve and the H i scale height data as simultaneous constraints. We treat the galaxy as a gravitationally coupled system of stars and gas, responding to the gravitational potential of the dark matter halo. An isothermal halo of spherical shape with a core density in the range of View the MathML source and a core radius between 2.5 and 2.9 kpc, gives the best fit to the observations for a range of realistic gas parameters assumed. We find that the best-fit core radius is only slightly higher than the stellar disc scale length (2.1 kpc), unlike the case of the high surface brightness galaxies where the halo core radius is typically 3–4 times the disc scale length of the stars. Thus our model shows that the dark matter halo dominates the dynamics of the low surface brightness, superthin galaxy UGC 7321 at all radii, including the inner parts of the galaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin accretion discs around massive compact objects can support slow pressure modes of oscillations in the linear regime that have azimuthal wavenumber m = 1. We consider finite, flat discs composed of barotropic fluid for various surface density profiles and demonstrate through WKB analysis and numerical solution of the eigenvalue problem - that these modes are stable and have spatial scales comparable to the size of the disc. We show that the eigenvalue equation can be mapped to a Schrodinger like equation. The analysis of this equation shows that all eigenmodes have discrete spectra. We find that all the models we have considered support negative frequency eigenmodes; however, the positive eigenfrequency modes are only present in power-law discs, albeit for physically uninteresting values of the power-law index beta and barotropic index gamma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has long been argued that better timing precision allowed by satellites like Rossi X-ray Timing Explorer (RXTE) will allow us to measure the orbital eccentricity and the angle of periastron of some of the bright persistent high-mass X-ray binaries (HMXBs) and hence a possible measurement of apsidal motion in these system. Measuring the rate of apsidal motion allows one to estimate the apsidal motion constant of the mass losing companion star and hence allows for the direct testing of the stellar structure models for these giant stars present in the HMXBs. In the present paper, we use the archival RXTE data of two bright persistent sources, namely Cen X-3 and SMC X-1, to measure the very small orbital eccentricity and the angle of periastron. We find that the small variations in the pulse profiles of these sources, rather than the intrinsic time resolution provided by RXTE, limit the accuracy with which we can measure arrival time of the pulses from these sources. This influences the accuracy with which one can measure the orbital parameters, especially the very small eccentricity and the angle of periastron in these sources. The observations of SMC X-1 in the year 2000 were taken during the high-flux state of the source and we could determine the orbital eccentricity and omega using this data set.