171 resultados para Specific surface area


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mesoporous MnO2 samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m(2) g(-1) is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO3)(2) electrolyte. A maximum specific capacitance (SC) of 265 Fg(-1) is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 mu m. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 A degrees C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 A degrees C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g(-1) is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 A degrees C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As Polymer Electrolyte Fuel Cells (PEFCs) are nearing the acceptable performance level for automotive and stationary applications, the focus on the research is shifting more and more toward enhancing their durability that still remains a major concern in their commercial acceptability. Hydrous ruthenium oxide (RuO2) is a promising material for pseudocapacitors due to its high stability, high specific-capacitance and rapid faradaic-reaction. Incorporation of carbon-supported RuO2 (RuO2/C) to platinum (Pt) is found to ameliorate both stability and catalytic activity of fuel cell cathodes that exhibit higher performance and durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance and cyclic voltammetry data. The degradation in performance of Pt-RuO2/C cathodes is found to be only similar to 8% after 10000 accelerated stress test (AST) cycles as against similar to 60% for Pt/C cathodes after 7000 AST cycles under similar conditions. These data are in conformity with the Electrochemical Surface Area and impedance results. Interestingly, Pt-RuO2/C cathodes can withstand more than 10000 AST cycles with only a nominal loss in their performance. Studies on catalytic electrodes with X-ray diffraction, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy reflect that incorporation of RuO2 to Pt helps mitigating aggregation of Pt particles and improves its stability during long-term operation of PEFCs. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.jes113440] All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A porous metalorganic framework, Mn(H3O)(Mn4Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl2 under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasmaatomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and BrunauerEmmettTeller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poorly crystalline porous delta-MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 degrees C and the reaction time of 24 h. The as-synthesized sample and also the sample heated at 300 degrees C have nanopetals morphology with large surface area. On heating at temperatures 400 degrees C, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. Furthermore, the poorly crystalline delta-MnO2 converts into well crystalline alpha-MnO2 phase. The electrochemical lithium intercalation and de-intercalation studies in a non-aqueous electrolyte provide a high discharge specific capacity (275 mAh g(-1)) at a specific current of 40 mA g(-1) for the poorly crystalline delta-MnO2 samples. The rate capability is also high. There is a decrease in capacity on repeated charge-discharge cycling. The specific capacity values of the crystalline alpha-MnO2 samples are considerably less than the values of poorly crystalline delta-MnO2 samples. Thus, the hydrothermal route facilitates preparation of poorly crystalline electrochemically active porous MnO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Borocarbonitrides (BxCyNz) with a graphene-like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid-state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon-rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100cycles) and rate capability over widely varying current density values (0.05-1Ag(-1)). B0.15C0.73N0.12 has a very high specific capacity of 710mAhg(-1) at 0.05Ag(-1). With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900mAhg(-1) at 0.05Ag(-1). It is believed that the solid-electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen-doped reduced giaphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6 M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126 F/g at a scan rate of 10 mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169 F/g at a scan rate of 10 mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258 F/g and 240 F/g at a scan rate of 5 mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5 V compared to 0.0-1 V in aqueous medium. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Porous alpha-Fe2O3 nanostructures have been synthesized by sol-gel route. The effect of preparation temperature on the morphology, structure, and electrochemical stability upon cycling has been studied for supercapacitor application. The discharge capacitance of alpha-Fe2O3 prepared at 300 A degrees C is 193 F g(-1), when the electrodes are cycled in 0.5 M Na2SO3 at a specific current of 1 A g(-1). The capacitance retention after 1,000 cycles is about 92 % of the initial capacitance at a current density of 2 A g(-1). The high discharge capacitance as well as stability of alpha-Fe2O3 electrodes is attributed to large surface area and porosity of the material. There is a decrease in specific capacitance (SC) on increasing the preparation temperature. As iron oxides are inexpensive, the synthetic route adopted for alpha-Fe2O3 in the present study is convenient and the SC is high with good cycling stability, the porous alpha-Fe2O3 is a potential material for supercapacitors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-performance supercapacitor electrode based on unique 1D Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and fabricated. The nano-heterostructures exhibit high specific capacitance (2013 F g(-1) at 2.5 A g(-1)), high energy and power density (23Wh kg(-1) and 5.5kW kg(-1), at the discharge current density of 20.8 A g(-1)), good capacitance retention and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the effective nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport. (C) 2014 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 A degrees C has a large surface area (1,200 m(2) g(-1)). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge-discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g(-1) is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 A degrees C. The supercapacitor properties of activated carbon sample prepared at 600 A degrees C are superior to the samples prepared at higher temperatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn0.35Ni0.55Fe0.1O2 (composition:Li1.2Mn0.54Ni0.22Fe0.04O2) is prepared by inverse microemulsion method and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies suggested that well crystalline submicronsized particles are obtained. The product samples possess mesoporosity with broadly distributed pores around 10 similar to 50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. However, the electrochemical activity of the composite samples increases with an increase in temperature. The discharge capacity values of the samples prepared at 900 degrees C are about 186 mAh g(-1) at a specific current of 25 mA g(-1) with an excellent cycling stability. The composite sample also possesses high rate capability. The high rate capability is attributed to the porous nature of the material. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A lithium-ion hybrid capacitor comprising of a battery type multi-component olivine (LiMn1/3Co1/3Ni1/3PO4) cathode and a capacitive type carbon negative electrode is reported. Olivine phosphate synthesized with chelating agent's polyvinylpyrrolidone (PVP) or triethanolamine (TEA) showed uniform carbon coating through in-situ process exhibiting a surface area 5.1 m(2)/g with porosity 0.02 cm(3)/g. The surface area for commercial carbon electrode was observed to be 1450 m(2)/g with high porosity 0.76 cm(3)/g. Galvanostatic charge/discharge cycling tests were conducted in the coin cells, olivine vs. Li, offering a cell voltage of 4.75 V vs. Li with a maximum specific capacitance of 125 F/g. In the case of olivine vs. carbon in a lithium-ion hybrid device delivered a high discharge capacitance of 86 F/g at a specific current of 0.12 A/g with a cycling retention of 53 F/g (38% loss) after 250 cycles. The obtained performance of PVP synthesized olivine material is manifested to uniform carbon coating and the trapped organic products that provide pathways for facile electrochemical reactions than their TEA counterparts.