133 resultados para Specific protein(s)
Resumo:
RecJ exonuclease plays crucial roles in several DNA repair and recombination pathways, and its ubiquity in bacterial species points to its ancient origin and vital cellular function. RecJ exonuclease from Haemophilus influenzae is a 575-amino-acid protein that harbors the characteristic motifs conserved among RecJ homologs. The purified protein exhibits a process 5'-3' single-stranded-DNA-specific exonuclease activity. The exonuclease activity of H. influenzae RecJ (HiRecJ) was supported by Mg2+ or Mn2+ and inhibited by Cd2+ suggesting a different mode of metal binding in HiRecJ as compared to Escherichia coli RecJ (EcoRecJ). Site-directed mutagenesis of highly conserved residues in HiRecJ abolished enzymatic activity. Interestingly, substitution of alanine for aspartate 77 resulted in a catalytically inactive enzyme that bound to DNA with a significantly higher affinity as compared to the wild-type enzyme. Noticeably, steady-state kinetic studies showed that H. influenzae single-stranded DNA-binding protein (HiSSB) increased the affinity of HiRecJ for single-stranded DNA and stimulated its exonuclease activity. HiSSB, whose C-terminal tail had been deleted, failed to enhance RecJ exonuclease activity. More importantly, HiRecJ was found to directly associate with its cognate single-stranded DNA-binding protein (SSB), as demonstrated by various in vitro assays, Interaction studies carried out with the truncated variants of HiRecJ and HiSSB revealed that the two proteins interact via the C-terminus of SSB protein and the core-catalytic domain of RecJ. Taken together, these results emphasize direct interactio between RecJ and SSB, which confers functional cooperativity to these two proteins. In addition, these results implicate SSB as being involved in the recruitment of RecJ to DNA and provide insights into the interplay between these proteins in repair and recombination pathways.
Resumo:
Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.
Resumo:
Bovine serum albumin conjugates of two trinucleotides, dpTpTpA and dTpTpAp, were prepared by linking the trinucleotides through their end phosphates by the ‘carbodiimide method’. Antibodies were raised in rabbits by injecting the trinucleotide-bovine serum albumin conjugates. Analysis by double diffusion in agar gel, quantitative precipitin reaction and its inhibition by haptens showed clearly the presence of antibodies specific to the whole trinucleotide molecule. The titre of antibodies obtained by the trinucleotide-rabbit serum albumin conjugates with their respective antisera was approximately the same, indicating that linking the trinucleotide through either 5′ or 3′ phosphate does not have an appreciable effect on the titre of antibodies. The results also demonstrate that the nucleotide(s) away from the carrier protein is more immunodominant than the one linked directly to the protein.
Resumo:
Riboflavin-binding protein was purified from the egg white of domestic duck and some of its properties were investigated. The protein was homogeneous by the criteria of gel filtration on Sephadex G-100 and electrophoresis on sodium dodecyl sulphate-polyacrylamide gels, had molecular weight of 36 000 ± 1000 and, unlike the chicken egg white protein (Mr 32 000 ± 2000), was devoid of covalently-bound carbohydrate. It was similar to the chicken riboflavin-binding protein in its behavior on ion-exchange celluloses and affinity to interact with the flavin and its coenzymes, but differed significantly in amino acid composition in that it completely lacked proline and contained less of methionine and arginine. The protein partially cross-reacted with the specific antiserum to chicken riboflavin-binding protein with a spur during immunodiffusion analysis.
Resumo:
The effects of the herbicide, 3-amino-1,2,4-triazole, an inhibitor of heme synthesis in rat liver, have been examined in the mold Neurospora crassa. The drug is a potent inhibitor of the growth of the mold and produces biochemical changes identical to those produced by chloramphenicol. 3-Amino-1,2,4-triazole, like chloramphenicol, is a direct and specific inhibitor of protein synthesis on mitoribosomes. A decrease in the levels of mitochondrial proteins which are completely or partly made on mitoribosomes and an accumulation in the levels of mitochondrial proteins of cytosolic origin have been observed. Both drugs depress porphyrin and heme levels, but there is actually an elevation in the levels of δ-aminolevulinate dehydratase, the rate-limiting enzyme of the heme-biosynthetic pathway in Neurospora crassa. In liver the enzyme is present in non-limiting amounts and the levels are depressed under conditions of 3-amino-1,2,4-triazole treatment. In Neurospora crassa the ‘derepression’ of δ-aminolevulinate dehydratase under conditions of 3-amino-1,2,4-triazole or chloramphenicol treatment is only partial because the drugs inhibit protein synthesis on mitoribosomes. It is concluded that an optimal rate of protein synthesis on mitoribosomes is necessary to maintain an adequate rate of heme synthesis.
Resumo:
Estrogen (E) induction of riboflavin carrier protein (RCP) in the chicken oviduct and liver was investigated to compare and contrast the kinetics, hormonal specificity and modulation of its elaboration in the 2 steroid-responsive tissues. During primary stimulation, continued daily E administration to immature female chicks elicited, after an initial lag, rapid growth and RCP content of the oviduct; neither progesterone (P) nor testosterone (T) could substitute for E in this respect. Furthermore, P given along with E curtailed tissue growth and its RCP content, whereas E + T had a synergistic effect on tissue growth only. During secondary stimulation, E administration steeply enhanced both tissue weight and RCP content without any lag. Interestingly, P (but not T) could substitute for E in augmenting magnum RCP concentration to a comparable extent while a concomitant effect on tissue growth was less marked. In contrast, hepatic induction of RCP was absolutely E-specific during both primary and secondary stimulations. Secondary stimulation with either E or P of E-primed birds enhanced the rates of RCP synthesis in the oviduct relative to that of total protein, whereas in the liver only E was effective in this regard. The absolute rate of E-induced RCP synthesis in both the steroid-stimulated tissues was significantly higher than that of general protein elaboration.
Resumo:
The water soluble carbodiimide mediated condensation of dipeptides of the general form Gly-X was carried out in the presence of mono- and poly-nucleotides. The observed yield of the tetrapeptide was found to be higher for peptide-nucleotide system of higher interaction specificity following mainly the anticodon-amino acid relationship (Basu, H.S. & Podder, S.K., 1981, Ind. J. Biochem. Biophys.,19, 251-253). The yield of the condensation product of L-peptide was more because of its higher interaction specificity. The extent of the racemization during the condensation of Gly-L-Phe, Gly-L-Tyr and Gly-D-Phe was found to be dependent on the specificity of the interaction -the higher the specificity, the lesser the racemization. The product formed was shown to have a catalytic effect on the condensation reaction. These data thus provide a mechanism showing how the specific interaction between amino acids/dipeptides and nucleic acids could lead to the formation of the lsquoprimitiversquo translation machinery.
Resumo:
The kinetics of estrogen-induced accumulation of riboflavin-carrier protein in the plasma was investigated in immature male rats using a specific and sensitive homologous radio-immunoassay procedure developed for this purpose. Following a single injection of the steroid hormone, plasma riboflavin-carrier protein levels increased markedly after an initial lag period of approximately 24 h, reaching peak levels around 96 h and declining thereafter. A 1.5 fold amplification of the inductive response was evident on secondary stimulation with the hormone. The magnitude of the response was dependent on hormonal dose, whereas the initial lag phase and the time of peak riboflavin-carrier protein induction were unaltered within the range of the steroid doses (0.1–10 mg/ kg body wt.) tested. Simultaneous administration of progesterone did not affect either the kinetics or the maximum level of the protein induced. The hormonal specificity of this induction was further adduced by the effect of administration of antiestrogens viz., En and Zu chlomiphene citrates, which effectively curtailed hormonal induction of the protein. That the induction involvedde novo-protein synthesis was evident from the complete inhibition obtained upon administration of cycloheximide. Passive immunoneutralization of endogenous riboflavin-carrier protein with antiserum to the homologous protein terminated pregnancy in rats confirming the earlier results with antiserum to chicken riboflavin-carrier protein.
Resumo:
A chitooligosaccharide specific lectin (Luffa acutangula agglutinin) has been purified from the exudate of ridge gourd fruits by affinity chromatography on soybean agglutininglycopeptides coupled to Sepharose-6B. The affinity purified lectin was found homogeneous by polyacrylamide gel electrophoresis, in sodium dodecyl sulphate-polyacrylamide gels, by gel filtration on Sephadex G-100 and by sedimentation velocity experiments. The relative molecular weight of this lectin is determined to be 48,000 ± 1,000 by gel chromatography and sedimentation equilibrium experiments. The sedimentation coefficient (S20, w) was obtained to be 4·06 S. The Stokes’ radius of the protein was found to be 2·9 nm by gel filtration. In sodium dodecyl sulphate-polyacrylamide gel electrophoresis the lectin gave a molecular weight of 24,000 in the presence as well as absence of 2-mercaptoethanol. The subunits in this dimeric lectin are therefore held by non-covalent interactions alone. The lectin is not a glycoprotein and circular dichroism spectral studies indicate that this lectin has 31% α-helix and no ß-sheet. The lectin is found to bind specifically to chitooligosaccharides and the affinity of the lectin increases with increasing oligosaccharide chain length as monitored by near ultra-violetcircular dichroism and intrinsic fluorescence titration. The values of ΔG, ΔΗ and ΔS for the binding process showed a pronounced dependence on the size of the oligosaccharide. The values for both ΔΗ and ΔS show a significant increase with increase in the oligosaccharide chain length showing that the binding of higher oligomers is progressively more favoured thermodynamically than chitobiose itself. The thermodynamic data is consistent with an extended binding site in the lectin which accommodates a tetrasaccharide. Based on the thermodynamic data, blue shifts and fluorescence enhancement, spatial orientation of chitooligosaccharides in the combining site of the lectin is assigned.
Resumo:
The kinetics of estrogen-induced elevation in the plasma concentration of riboflavin-binding protein, a minor yolk constituent, was investigated in immature male chicks, using a specific and sensitive radioimmunoassay proceudre. Following a single injection of the hormone, the plasma riboflavin-binding protein content was enhanced several-fold at 6 h. reaching peak levels around 48 h and declining thereafter. A two-fold amplication of the response was evident on secondary stimulation with the hormone. A 4-h lag phase prior to onset of induction was noticed during both primary and secondary stimulat ions with the steroid hormone. The magnitude of the response was dependent on the hormonal dose whereas the initial lag phase and the time of peak riboflavin-binding protein accumulation were unaltered within the range of hormonal doses tested. The half-life of riboflavin-binding protein in the circulation was 10 h, as calculated from measurement of the rate of disappearance of exogenously administered 125I-labelled protein. Simultaneous administration of progestrone did bot affect the kinetics of riboflavin-binding protein production. On the other hand, the antiestrogens, cis- and trans-clomiphene citrates, given 30 min prior to estrogen and cycloheximide, effectively countered the hormone-induced riboflavin-binding protein elaboration. Both progesterone and the anti-esterogens per se were completely ineffective in substituting for estrogen in the inductive ptrocess.
Resumo:
Underlying the unique structures and diverse functions of proteins area vast range of amino-acid sequences and a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique structure of proteins from the pool of a limited number of available folds.
Resumo:
The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.
Resumo:
his study elucidates some structural and biological features of galactose-binding variants of the cytotoxic proteins ricin and abrin. An isolation procedure is reported for ricin variants from Ricinus communis seeds by using lactamyl-Sepharose affinity matrix, similar to that reported previously for variants of abrin from Abrus precatorius seeds [Hegde, R., Maiti, T. K. & Podder, S. K. (1991) Anal. Biochem. 194, 101–109]. Ricin variants, subfractionated on carboxymethyl-Sepharose CL-6B ion-exchange chromatography, were characterized further by SDS/PAGE, IEF and a binding assay. Based on the immunological cross-reactivity of antibody raised against a single variant of each of ricin and abrin, it was established that all the variants of the corresponding type are immunologically indistinguishable. Analysis of protein titration curves on an immobilized pH gradient indicated that variants of abrin I differ from other abrin variants, mainly in their acidic groups and that variance in ricin is a cause of charge substitution. Detection of subunit variants of proteins by two-dimensional gel electrophoresis showed that there are twice as many subunit variants as there are variants of holoproteins, suggesting that each variant has a set of subunit variants, which, although homologous, are not identical to the subunits of any other variant with respect to pI. Seeds obtained from polymorphic species of R. communis showed no difference in the profile of toxin variants, as analyzed by isoelectric focussing. Toxin variants obtained from red and white varieties of A. precatorius, however, showed some difference in the number of variants as well as in their relative intensities. Furthermore, variants analyzed from several single seeds of A. precatorius red type revealed a controlled distribution of lectin variants in three specific groups, indicating an involvement of at least three genes in the production of Abrus lectins. The complete absence or presence of variants in each group suggested a post-translational differential proteolytic processing, a secondary event in the production of abrin variants.
Resumo:
VP6, the intermediate capsid protein of the virion, specifies subgroup specificity of rotavirus, It is also the most conserved, both at nucleotide and amino acid levels, among group A rotaviruses and is the target of choice for rotavirus detection, In this study we report the sequence of the subgroup I (SGI)-specific VP6 from the serotype G2 strain IS2 isolated from a child suffering from acute diarrhoea in Bangalore ana its comparison with the published VP6 sequences. Interestingly, IS2 gene 6 shared highest homology with that from bovine UK strain and the protein contained substitutions by lysine at amino acid positions 97 and 134, In contrast, the amino acids Met and Glu/Asp at these respective positions are highly conserved in all the other group A rotaviruses sequenced so far, These observations have obvious implications for the evolution of serotype G2 and G2-like strains circulating in India, The SGI VP6, of a human rotavirus, possessing epitopes that are conformationally similar to those found in the native protein in the virion, was successfully expressed in E. coli and purified for the first time by single-step affinity chromatography.
Resumo:
A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.