178 resultados para Specific Serology
Resumo:
Sequence specific interaction between DNA and protein molecules has been a subject of active investigation for decades now. Here, we have chosen single promoter containing bacteriophage Delta D-III T7 DNA and Escherichia coli RNA polymerase and followed their recognition at the air-water interface by using the surface plasmon resonance (SPR) technique, where the movement of one of the reacting species is restricted by way of arraying them on an immobilized support. For the Langmuir monolayer studies, we used a RNA polymerase with a histidine tag attached to one of its subunits, thus making it an xcellent substrate for Ni(II) ions, while the SPR Studies were done using biotin-labeled DNA immobilized on a streptavidin-coated chip. Detailed analysis of the thermodynamic parameters as a function of concentration and temperature revealed that the interaction of RNA polymerase with T7 DNA is largely entropy driven (83 (+/- 12) kcal mol(-1)) with a positive enthalpy of 13.6 (+/- 3.6) kcal mol(-1), The free energy of reaction determined by SPR and Langmuir-Blodgett technique was -11 (+/- 2) and -15.6 kcal mol(-1), respectively. The ability of these methods to retain the specificity of the recognition process was also established.
Resumo:
In mealybugs, chromatin condensation is related to both genomic imprinting and sex determination. The paternal chromosomal complement is condensed and genetically inactive in sons but not in daughters. During a study of chromatin organization in Planococcus lilacinus, digestion with micrococcal nuclease showed that 3% to 5% of the male genome is resistant to the enzyme. This Nuclease Resistant Chromatin (NRC) apparently has a nucleosomal organization. Southern hybridization of genomic DNA suggests that NRC sequences are present in both sexes and occur throughout the genome. Cloned NRC DNA is A+T-rich with stretches of adenines similar to those present in mouse alpha-satellite sequences. NRC DNA also contains sequence motifs that are typically associated with the nuclear matrix. Salt-fractionation experiments showed that NRC sequences are matrix associated. These observations are discussed in relation to the unusual cytological features of mealybug chromosomes, including the possible existence of multiple centres of inactivation.
Resumo:
Sexually mature male rabbits actively immunized against highly purified ovine LH (oLH) were used as a model system to study the effects of endogenous LH deprivation (and therefore testosterone) on spermatogenesis as well as pituitary FSH secretion. Immunization against oLH generated antibody titres capable of cross-reacting and neutralizing rabbit LH and this resulted in a significant reduction (P<0.01) in serum testosterone levels by 2-4 weeks of immunization. A significant increase in circulating FSH concentration (from a basal level of similar to 1 ng to 60-100 ng/ml; P<0.01) was observed within 4-6 weeks of immunization, perhaps a consequence of the negative feedback effect of the lack of testosterone. The effect of LH deprivation on spermatogenesis assessed by DNA flow cytometry and histological analyses of testicular biopsy tissue revealed that lack of testosterone primarily results in a rapid reduction and complete absence of round (1C) and elongated (HC) spermatids. The immediate effect of LH/testosterone deprivation thus appears to be at the step of meiotic transformation of primary spermatocytes (4C) to 1C. A significant reduction (>80%; P<0.01) in the 4C population and a relative accumulation (>90%; P<0.01) in spermatogonia (2C) was also observed, suggesting a need for testosterone during the transformation of 2C to 1C. In all but one of the rabbits, both qualitative and quantitative recovery in spermatogenesis occurred during the recovery phase, even at a time when only a marginal increase in serum testosterone (compared with the preimmunization) levels was observed as a result of a rapid decline in the cross-reactive antibody titres. These results clearly show that LH/testosterone deprivation in addition to primarily affecting the meiotic step also regulates the conversion of 2C to 4C during spermatogenesis.
Resumo:
Antibodies specific for 1-methylguanosine (m1G) were produced by immunization of rabbits with a bovine serum albumin conjugate of m1G. Antibodies specificity was determined by measuring the inhibition of binding of 3H-m1G trialcohol by various nucleosides or related derivatives. The relative affinities of the unpurified antibodies for various nucleosides showed that m1G trialcohol had an 8-fold higher affinity than m1G; further, guanosine and 2'-O-methylguanosine had at least a 500-fold lower affinity than m1G. The antibodies were purified on m1G-AH-Sepharose column and subsequently immobilized to Sepharose. Immobilized m1G antibodies quantitatively and exclusively retained m1G-containing oligonucleotides derived from ribonuclease A digests of 32P-labeled phage T4 tRNAPro. On the other hand, intact 32P-labeled T4 tRNAPro or its precursor RNA(s) did not bind to the same column. These findings indicate that at least a portion of m1G adjacent to the 3' end of the anticodon in intact T4 tRNAPro is not accessible for antibody binding.
Resumo:
Growth of human promonocytic leukaemic U937 cells was found arrested within 24 h upon exposure to interferon gamma (IFN-gamma). Removal of the interferon did not result in the resumption of growth, as is evident from the absence of doubling of viable cell count and(3)H-thymidine incorporation. 5-Bromo-2'-deoxyuridine-based flow cytometric analysis of the growth-arrested cells, 24 h subsequent to the removal of IFN-gamma, showed absence of DNA synthesis, confirming the irreversible nature of the growth inhibition. Propidium iodide-based flow cytometric analysis of the growth-arrested cells showed a distribution which is typical of a growth inhibition without resulting in the accumulation of cells in any specific phase of the cell cycle. These results indicated that IFN-gamma arrested growth of U937 cells in an irreversible and cell cycle phase-independent manner. These observations were in contrast to our earlier report on the reversible and cell cycle phase-specific growth inhibition of human amniotic (fetal epithelial) WISH cells by the interferon. Copyright 1999 Academic Press.
Resumo:
The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of pepti-domimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of ail anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8(+) CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Resumo:
Confinement and Surface specific interactions call induce Structures otherwise unstable at that temperature and pressure. Here we Study the groove specific water dynamics ill the nucleic acid sequences, poly-AT and poly-GC, in long B-DNA duplex chains by large scale atomistic molecular dynamics simulations, accompanied by thermodynamic analysis. While water dynamics in the major groove remains insensitive to the sequence differences, exactly the opposite is true for the minor groove water. Much slower water dynamics observed in the minor grooves (especially in the AT minor) call be attributed to all enhanced tetrahedral ordering (< t(h)>) of water. The largest value of < t(h)> in the AT minor groove is related to the spine of hydration found in X-ray Structure. The calculated configurational entropy (S-C) of the water molecules is found to be correlated with the self-diffusion coefficient of water in different region via Adam-Gibbs relation D = A exp(-B/TSC), and also with < t(h)>.
Resumo:
Aurora kinases are essential for chromosomal segregation and cell division and thereby important for maintaining the proper genomic integrity. There are three classes of aurora kinases in humans: A, B, and C. Aurora kinase A is frequently overexpressed in various cancers. The link of the overexpression and tumorigenesis is yet to be understood. By employing virtual screening, we have found that anacardic acid, a pentadecane aliphatic chain containing hydroxylcarboxylic acid, from cashew nut shell liquid could be docked in Aurora kinases A and B. Remarkably, we found that anacardic acid could potently activate the Aurora kinase A mediated phosphorylation of histone H3, but at a similar concentration the activity of aurora kinase B remained unaffected in vitro. Mechanistically, anacardic acid induces the structural changes and also the autophosphorylation of the aurora kinase A to enhance the enzyme activity. This data thus indicate anacardic acid as the first small-molecule activator of Aurora kinase, which could be highly useful for probing the function of hyperactive (overexpressed) Aurora kinase A.
Resumo:
We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFaF163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET2 assays. BRET2 ratios of the wild type GAFa fusion protein, but not GAFaF163A, increased in the presence of cGMP but not cAMP. Higher basal BRET2 ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFaF163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET2 technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET2 sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.
Resumo:
BACKGROUND: Earlier we reported that an oral administration of two mannose-specific dietary lectins, banana lectin (BL) and garlic lectin (GL), led to an enhancement of hematopoietic stem and progenitor cell (HSPC) pool in mice. STUDY DESIGN AND METHODS: Cord blood–derived CD34+ HSPCs were incubated with BL, GL, Dolichos lectin (DL), or artocarpin lectin (AL) for various time periods in a serum- and growth factor–free medium and were subjected to various functional assays. Reactive oxygen species (ROS) levels were detected by using DCHFDA method. Cell fractionation was carried out using lectin-coupled paramagnetic beads. RESULTS: CD34+ cells incubated with the lectins for 10 days gave rise to a significantly higher number of colonies compared to the controls, indicating that all four lectins possessed the capacity to protect HSPCs in vitro. Comparative analyses showed that the protective ability of BL and GL was better than AL and DL and, therefore, further experiments were carried out with them. The output of long-term culture-initiating cell (LTC-IC) and extended LTC-IC assays indicated that both BL and GL protected primitive stem cells up to 30 days. The cells incubated with BL or GL showed a substantial reduction in the ROS levels, indicating that these lectins protect the HSPCs via antioxidant mechanisms. The mononuclear cell fraction isolated by lectin-coupled beads got enriched for primitive HSPCs, as reflected in the output of phenotypic and functional assays. CONCLUSION: The data show that both BL and GL protect the primitive HSPCs in vitro and may also serve as cost-effective HSPC enrichment tools.
Resumo:
The process cascade leading to the final accommodation of the carbohydrate ligand in the lectin’s binding site comprises enthalpic and entropic contributions of the binding partners and solvent molecules. With emphasis on lactose, N-acetyllactosamine, and thiodigalactoside as potent inhibitors of binding of galactoside-specific lectins, the question was addressed to what extent these parameters are affected as a function of the protein. The microcalorimetric study of carbohydrate association to the galectin from chicken liver (CG-16) and the agglutinin from Viscum album (VAA) revealed enthalpy–entropy compensation with evident protein type-dependent changes for N-acetyllactosamine. Reduction of the entropic penalty by differential flexibility of loops or side chains and/or solvation properties of the protein will have to be reckoned with to assign a molecular cause to protein type-dependent changes in thermodynamic parameters for lectins sharing the same monosaccharide specificity.
Resumo:
Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the beta-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.