132 resultados para Single layer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical-pump terahertz-probe differential transmission measurements of as-prepared single layer graphene (AG) (unintentionally hole dopedwith Fermi energy E-F at similar to -180 meV), nitrogen doping compensated graphene (NDG) with E-F similar to -10 meV, and thermally annealed doped graphene (TAG) are examined quantitatively to understand the opposite signs of photoinduced dynamic terahertz conductivity Delta sigma. It is negative for AG and TAG but positive for NDG. We show that the recently proposed mechanism of multiple generations of secondary hot carriers due to Coulomb interaction of photoexcited carriers with the existing carriers together with the intraband scattering can explain the change of photoinduced conductivity sign and its magnitude. We give a quantitative estimate of Delta sigma in terms of controlling parameters-the Fermi energy E-F and momentum relaxation time tau. Furthermore, the cooling of photoexcited carriers is analyzed using a supercollision model which involves a defect mediated collision of the hot carriers with the acoustic phonons, thus giving an estimate of the deformation potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the hybrids of single-layer graphene oxide with manganese ferrite magnetic nanoparticles have the best adsorption properties for efficient removal of Pb(II), As(III), and As(V) from contaminated water. The nanohybrids prepared by coprecipitation technique were characterized using atomic force and scanning electron microscopies, Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and surface area measurements. Magnetic character of the nanohybrids was ascertained by a vibrating sample magnetometer. Batch experiments were carried out to quantify the adsorption kinetics and adsorption capacities of the nanohybrids and compared with the bare nanoparticles of MnFe2O4. The adsorption data from our experiments fit the Langmuir isotherm, yielding the maximum adsorption capacity higher than the reported values so far. Temperature-dependent adsorption studies have been done to estimate the free energy and enthalpy of adsorption. Reusability, ease of magnetic separation, high removal efficiency, high surface area, and fast kinetics make these nanohybrids very attractive candidates for low-cost adsorbents for the effective coremoval of heavy metals from contaminated water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a closed-form continuous model for the electrical conductivity of a single layer graphene (SLG) sheet in the presence of short-range impurities, long-range screened impurities, and acoustic phonons. The validity of the model extends from very low doping levels (chemical potential close to the Dirac cone vertex) to very high doping levels. We demonstrate complete functional relations of the chemical potential, polarization function, and conductivity with respect to both doping level and temperature (T), which were otherwise developed for SLG sheet only in the very low and very high doping levels. The advantage of the continuous conductivity model reported in this paper lies in its simple form which depends only on three adjustable parameters: the short-range impurity density, the long-range screened impurity density, and temperature T. The proposed theoretical model was successfully used to correlate various experiments in the midtemperature and moderate density regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets, has been determined by using the upper bound theorem of the limit analysis in conjunction with finite elements and linear optimization. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (N-c and N-gamma) with an inclusion of the reinforcement has been computed in terms of the efficiency factors eta(c) and eta(gamma). The results have been obtained (i) for different values of phi in case of fully granular (c=0) and c-phi soils, and (ii) for different rates (m) at which the cohesion increases with depth for a purely cohesive soil (phi=0 degrees). The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in phi. The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The results obtained from the study are found to compare well with the available theoretical and experimental data reported in literature. (C) 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowing the nature of the enzyme-graphene interface is critical for a design of graphene-based biosensors. Extensive contacts between graphene and enzyme could be obtained by employing a suitable encapsulation which does not impede its enzymatic reaction. We have performed molecular dynamics simulations to obtain an insight on many forms of contact between glucose oxidase dimer and the single-layer graphene nano-sheets. The unconnected graphene sheets tended to form a flat stack regardless of their initial positions around the enzyme, whereas the same graphene sheets linked together formed a flower-like shape engendering different forms of wrapping of the enzyme. During the encapsulation no core hydrophobic residues of the enzyme were exposed. Since the polar and charged amino acids populated the enzyme's surface we also estimated, using DFT calculations, the interaction energies of individual polar and charged amino acid residues with graphene. It was found that the negatively charged residues can bind to graphene unexpectedly strongly; however, the main effect of encapsulation comes from the overlap of adjacent edges of graphene sheets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spectral elements are found to be extremely resourceful to study the wave propagation characteristics of structures at high frequencies. Most of the aerospace structures use honeycomb sandwich constructions. The existing spectral elements use single layer theories for a sandwich construction wherein the two face sheets vibrate together and this model is sufficient for low frequency excitations. At high frequencies, the two face sheets vibrate independently. The Extended Higher order SAndwich Plate theory (EHSaPT) is suitable for representing the independent motion of the face sheets. A 1D spectral element based on EHSaPT is developed in this work. The wave number and the wave speed characteristics are obtained using the developed spectral element. It is shown that the developed spectral element is capable of representing independent wave motions of the face sheets. The propagation speeds of a high frequency modulated pulse in the face sheets and the core of a honeycomb sandwich are demonstrated. Responses of a typical honeycomb sandwich beam to high frequency shock loads are obtained using the developed spectral element and the response match very well with the finite element results. It is shown that the developed spectral element is able to represent the flexibility of the core resulting into independent wave motions in the face sheets, for which a finite element method needs huge degrees of freedom. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this letter, we present the results of systematic experimental investigations of the effect of different chemical environments on the low frequency resistance fluctuations of single layer graphene field effect transistors. The shape of the power spectral density of noise was found to be determined by the energetics of the adsorption-desorption of molecules from the graphene surface making it the dominant source of noise in these devices. We also demonstrate a method of quantitatively determining the adsorption energies of chemicals on graphene surface based on noise measurements. We find that the magnitude of noise is extremely sensitive to the nature and amount of the chemical species present. We propose that a chemical sensor based on the measurement of low frequency resistance fluctuations of single layer graphene field effect transistor devices will have extremely high sensitivity, very high specificity, high fidelity, and fast response times. (c) 2015 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)-graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN graphene hBN devices. Here, we present the low frequency 1/f noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/f noise indeed follows the Hooge's empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fabrication of single-component multilayer thin films still remains a challenging task via the layer-by-layer (LbL) approach. In this communication, we report the self-assembly of single-component multilayer thin films on flat and colloidal substrates through glutaraldehyde mediated covalent bonding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transition induced by an isolated streamwise vortex embedded in a flat plate boundary layer was studied experimentally. The vortex was created by a gentle hill with a Gaussian profile that spanned on half of the width of a flat plate mounted in a low turbulence wind tunnel. PIV and hot-wire anemometry data were taken. Transition occurs as a non-inclined shear layer breaks up into a sequence of vortices, close to the boundary layer edge. The passing frequency of these vortices scales with square of the freestream velocity, similar to that in single-roughness induced transition. Quadrant analysis of streamwise and wall-normal velocity fluctuations show large ejection events in the outer layer. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural to LiCoO2, is considered as a potential cathode material. A layer of carbon coated on the particles improves the electrode performance, Which is attributed to an increase of the grain connectivity and also to protection of metal oxide from chemical reaction. The present work involves in situ synthesis of carbon-coated submicrometer-sized particles of LiNi1/3Co1/3Mn1/3O2 in an inverse microemulsion medium in the presence of glucose. The precursor obtained from the reaction is heated in air at 900 degrees C for 6 h to get crystalline LiNi1/3Co1/3Mn1/3O2. The carbon coating is found to impart porosity as well as higher surface area in relation to bare samples of the compound. The electrochemical characterization studies provide that carbon-coated LiNi1/3Co1/3Mn1/3O2 samples exhibit improved rate capability and cycling performance. The carbon coatings are shown to suppress the capacity fade, which is normally observed for the bare compound. Impedance spectroscopy data provide additional evidence for the beneficial effect of a carbon coating on LiNi1/3Co1/3Mn1/3O2 particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the growth of artificially generated turbulent spots and intermittency distribution in the transition region on a circular cylinder in axial flow show that the instability Reynolds number of 11,000 has a marked effect on the properties. In particular, it is found that the spot production in the initial region when a single turbulent spot has not yet wrapped around the cylinder and the propagation is essentially two-dimensional, is significantly altered. But the transition in the downstream or latter region, where most of the turbulent spots propagate onedimensionally (like the turbulent plugs in a pipe), is not affected. When the radius Reynolds number is more than 11,000, the intermittency law in the initial region is essentially the same as in twodimensional flow on a flat plate and in the latter region it is the one-dimensional flow in a pipe, the demarcation between the two regions being quite sharp.