37 resultados para Shoot pruning
Resumo:
We address the problem of mining targeted association rules over multidimensional market-basket data. Here, each transaction has, in addition to the set of purchased items, ancillary dimension attributes associated with it. Based on these dimensions, transactions can be visualized as distributed over cells of an n-dimensional cube. In this framework, a targeted association rule is of the form {X -> Y} R, where R is a convex region in the cube and X. Y is a traditional association rule within region R. We first describe the TOARM algorithm, based on classical techniques, for identifying targeted association rules. Then, we discuss the concepts of bottom-up aggregation and cubing, leading to the CellUnion technique. This approach is further extended, using notions of cube-count interleaving and credit-based pruning, to derive the IceCube algorithm. Our experiments demonstrate that IceCube consistently provides the best execution time performance, especially for large and complex data cubes.
Resumo:
In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Inverter dead-time, which is meant to prevent shoot-through fault, causes harmonic distortion and change in the fundamental voltage in the inverter output. Typical dead-time compensation schemes ensure that the amplitude of the fundamental output current is as desired, and also improve the current waveform quality significantly. However, even with compensation, the motor line current waveform is observed to be distorted close to the current zero-crossings. The IGBT switching transition times being significantly longer at low currents than at high currents is an important reason for this zero-crossover distortion. Hence, this paper proposes an improved dead-time compensation scheme, which makes use of the measured IGBT switching transition times at low currents. Measured line current waveforms in a 2.2 kW induction motor drive with the proposed compensation scheme are compared against those with the conventional dead-time compensation scheme and without dead-time compensation. The experimental results on the motor drive clearly demonstrate the improvement in the line current waveform quality with the proposed method.
Resumo:
Dead-time is introduced between the gating signals to the top and bottom switches in a voltage source inverter (VSI) leg, to prevent shoot through fault due to the finite turn-off times of IGBTs. The dead-time results in a delay when the incoming device is an IGBT, resulting in error voltage pulses in the inverter output voltage. This paper presents the design, fabrication and testing of an advanced gate driver, which eliminates dead-time and consequent output distortion. Here, the gating pulses are generated such that the incoming IGBT transition is not delayed and shoot-through is also prevented. The various logic units of the driver card and fault tolerance of the driver are verified through extensive tests on different topologies such as chopper, half-bridge and full-bridge inverter, and also at different conditions of load. Experimental results demonstrate the improvement in the load current waveform quality with the proposed circuit, on account of elimination of dead-time.
Resumo:
Frequent episode discovery is one of the methods used for temporal pattern discovery in sequential data. An episode is a partially ordered set of nodes with each node associated with an event type. For more than a decade, algorithms existed for episode discovery only when the associated partial order is total (serial episode) or trivial (parallel episode). Recently, the literature has seen algorithms for discovering episodes with general partial orders. In frequent pattern mining, the threshold beyond which a pattern is inferred to be interesting is typically user-defined and arbitrary. One way of addressing this issue in the pattern mining literature has been based on the framework of statistical hypothesis testing. This paper presents a method of assessing statistical significance of episode patterns with general partial orders. A method is proposed to calculate thresholds, on the non-overlapped frequency, beyond which an episode pattern would be inferred to be statistically significant. The method is first explained for the case of injective episodes with general partial orders. An injective episode is one where event-types are not allowed to repeat. Later it is pointed out how the method can be extended to the class of all episodes. The significance threshold calculations for general partial order episodes proposed here also generalize the existing significance results for serial episodes. Through simulations studies, the usefulness of these statistical thresholds in pruning uninteresting patterns is illustrated. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels is necessary for the emergence of several functional maps within hippocampal pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy on nine such functional maps, related to input resistance and local/transfer impedance properties, using conductance-based models of hippocampal pyramidal neurons. We introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction through a pruning algorithm, measured all functional maps in each pruned reconstruction, and arrived at functional forms for the dependence of underlying measurements on dendritic length. We found that, across frequencies, atrophied neurons responded with higher efficiency to incoming inputs, and the transfer of signals across the dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the presence of identical HCN-channel density gradients, spatial gradients in input resistance, local/transfer resonance frequencies and impedance profiles were significantly constricted in reconstructions with dendrite atrophy, where these physiological measurements across dendritic locations converged to similar values. These results revealed that, in atrophied dendritic structures, the presence of an ion channel density gradient alone was insufficient to sustain homologous functional maps along the same neuronal topograph. We assessed the biophysical basis for these conclusions and found that this atrophy-induced constriction of functional maps was mediated by an enhanced spatial spread of the influence of an HCN-channel cluster in atrophied trees. These results demonstrated that the influence fields of ion channel conductances need to be localized for channel gradients to express themselves as homologous functional maps, suggesting that ion channel gradients are necessary but not sufficient for the emergence of functional maps within single neurons.
Resumo:
Roles for the transcription factor RFL in rice axillary meristem development were studied. Its regulatory effects on LAX1, CUC1, and OsPIN3 reveal its functions in axillary meristem specification and outgrowth.Axillary meristems (AMs) are secondary shoot meristems whose outgrowth determines plant architecture. In rice, AMs form tillers, and tillering mutants reveal an interplay between transcription factors and the phytohormones auxin and strigolactone as some factors that underpin this developmental process. Previous studies showed that knockdown of the transcription factor gene RFL reduced tillering and caused a very large decrease in panicle branching. Here, the relationship between RFL, AM initiation, and outgrowth was examined. We show that RFL promotes AM specification through its effects on LAX1 and CUC genes, as their expression was modulated on RFL knockdown, on induction of RFL:GR fusion protein, and by a repressive RFL-EAR fusion protein. Further, we report reduced expression of auxin transporter genes OsPIN1 and OsPIN3 in the culm of RFL knockdown transgenic plants. Additionally, subtle change in the spatial pattern of IR4 DR5:GFP auxin reporter was observed, which hints at compromised auxin transport on RFL knockdown. The relationship between RFL, strigolactone signalling, and bud outgrowth was studied by transcript analyses and by the tillering phenotype of transgenic plants knocked down for both RFL and D3. These data suggest indirect RFL-strigolactone links that may affect tillering. Further, we show expression modulation of the auxin transporter gene OsPIN3 upon RFL:GR protein induction and by the repressive RFL-EAR protein. These modified forms of RFL had only indirect effects on OsPIN1. Together, we have found that RFL regulates the LAX1 and CUC genes during AM specification, and positively influences the outgrowth of AMs though its effects on auxin transport.