164 resultados para Series, Infinite.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
The surface instability of a semi-infinite plasma immersed in a high frequency field is investigated. When the natural Langmuir frequency of the surface is nearly equal to the frequency of the high frequency field, the dispersion relation predicts build-up of oscillations with a growth rate comparable with the real part of the frequency. Threshold values above which the instability is possible are derived.
Resumo:
The problem of an infinite transversely isotropic circular cylindrical shell subjected to an axisymmetric radial external line load is investigated using elasticity theory, classical shell theory and shear deformation theory. The results obtained by these methods are compared for two ratios of inner to outer shell radius and for varying degrees of anisotropy. Some typical results are given here to show the effect of anisotropy and the thickness of the shell on the distribution of stresses and displacements.
Resumo:
Under certain specific assumption it has been observed that the basic equations of magneto-elasticity in the case of plane deformation lead to a biharmonic equation, as in the case of the classical plane theory of elasticity. The method of solving boundary value problems has been properly modified and a unified approach in solving such problems has been suggested with special reference to problems relating thin infinite plates with a hole. Closed form expressions have been obtained for the stresses due to a uniform magnetic field present in the plane of deformation of a thin infinite conducting plate with a circular hole, the plate being deformed by a tension acting parallel to the direction of the magnetic field.
Resumo:
The ultramicrostructure of phases with n = 1, 2 and 3 in the hypothetical series Bi2WnO3n+3 has been investigated by high resolution electron microscopy and energy dispersive X-ray emission spectroscopy. For n = 1 and 2, well ordered phases with the predicted compositions have been obtained, but for n = 3, a severely disordered assemblage containing intergrowths of the two known structures and strips of the n = 3 member is produced. No evidence for ordered structures with n > 2 has yet been obtained.
Resumo:
An exact solution for the stresses in a transversely isotropic infinite thick plate having a circular hole and subjected to axisymmetric uniformly distributed load on the plane surfaces has been given. The solution is in the form of Fourier-Bessel series and integrals. Numerical results for the stresses are given using the elastic constants for magnesium, and are compared with the isotropic case.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of inhomogeneous infinite simultaneous equations encountered in the analysis of surface acoustic wave propagation along the periodically perturbed surface of a piezoelectric medium.
Resumo:
When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.
Resumo:
Free vibration of thick rectangular plates is investigated by using the “method of initial functions” proposed by Vlasov. The governing equations are derived from the three-dimensional elastodynamic equations. They are obtained in the form of series and theories of any desired order can be constructed by deleting higher terms in the infinite order differential equations. The numerical results are compared with those of classical, Mindlin, and Lee and Reismann solutions.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of infinite simultaneous equations encountered in solving for the electric field of a periodic electrode structure.